Suppr超能文献

利用模拟和实验数据对冬性优质小麦的跨世代方差基因组预测进行验证。

Validation of cross-progeny variance genomic prediction using simulations and experimental data in winter elite bread wheat.

机构信息

UMR1095, GDEC, INRAE-Université Clermont-Auvergne, Clermont-Ferrand, France.

INRAE-UE Lille, 2 Chaussée Brunehaut, Estrées Mons, BP50136, 80203, Peronne Cedex, France.

出版信息

Theor Appl Genet. 2024 Sep 18;137(10):226. doi: 10.1007/s00122-024-04718-6.

Abstract

From simulations and experimental data, the quality of cross progeny variance genomic predictions may be high, but depends on trait architecture and necessitates sufficient number of progenies. Genomic predictions are used to select genitors and crosses in plant breeding. The usefulness criterion (UC) is a cross-selection criterion that necessitates the estimation of parental mean (PM) and progeny standard deviation (SD). This study evaluates the parameters that affect the predictive ability of UC and its two components using simulations. Predictive ability increased with heritability and progeny size and decreased with QTL number, most notably for SD. Comparing scenarios where marker effects were known or estimated using prediction models, SD was strongly impacted by the quality of marker effect estimates. We proposed a new algebraic formula for SD estimation that takes into account the uncertainty of the estimation of marker effects. It improved predictions when the number of QTL was superior to 300, especially when heritability was low. We also compared estimated and observed UC using experimental data for heading date, plant height, grain protein content and yield. PM and UC estimates were significantly correlated for all traits (PM: 0.38, 0.63, 0.51 and 0.91; UC: 0.45, 0.52, 0.54 and 0.74; for yield, grain protein content, plant height and heading date, respectively), while SD was correlated only for heading date and plant height (0.64 and 0.49, respectively). According to simulations, SD estimations in the field would necessitate large progenies. This pioneering study experimentally validates genomic prediction of UC but the predictive ability depends on trait architecture and precision of marker effect estimates. We advise the breeders to adjust progeny size to realize the SD potential of a cross.

摘要

从模拟和实验数据来看,杂交后代方差的基因组预测质量可能很高,但这取决于性状结构,并且需要足够数量的后代。基因组预测用于选择植物育种中的亲本和杂交。有用性标准(UC)是一种交叉选择标准,需要估计亲本均值(PM)和后代标准差(SD)。本研究使用模拟评估了影响 UC 及其两个组成部分预测能力的参数。预测能力随遗传力和后代数量的增加而增加,随 QTL 数量的减少而减少,尤其是 SD。比较标记效应已知或使用预测模型估计的情况时,SD 强烈受到标记效应估计质量的影响。我们提出了一种新的 SD 估计代数公式,该公式考虑了标记效应估计的不确定性。当 QTL 数量超过 300 个时,尤其是遗传力较低时,它可以提高预测能力。我们还使用实验数据比较了实际的和预测的 UC 值,这些数据用于抽穗期、株高、籽粒蛋白含量和产量。对于所有性状,PM 和 UC 估计值均显著相关(PM:0.38、0.63、0.51 和 0.91;UC:0.45、0.52、0.54 和 0.74;分别为产量、籽粒蛋白含量、株高和抽穗期),而 SD 仅与抽穗期和株高相关(0.64 和 0.49)。根据模拟结果,田间 SD 估计需要大量的后代。这项开创性的研究从实验上验证了 UC 的基因组预测,但预测能力取决于性状结构和标记效应估计的精度。我们建议育种者根据交叉的 SD 潜力调整后代数量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d1b/11410863/ab6c059a6da9/122_2024_4718_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验