Dan Jonathan, Pale Una, Amirshahi Alireza, Cappelletti William, Ingolfsson Thorir Mar, Wang Xiaying, Cossettini Andrea, Bernini Adriano, Benini Luca, Beniczky Sándor, Atienza David, Ryvlin Philippe
Embedded Systems Laboratory, EPFL, Lausanne, Switzerland.
LTS4, EPFL, Lausanne, Switzerland.
Epilepsia. 2024 Sep 18. doi: 10.1111/epi.18113.
The need for high-quality automated seizure detection algorithms based on electroencephalography (EEG) becomes ever more pressing with the increasing use of ambulatory and long-term EEG monitoring. Heterogeneity in validation methods of these algorithms influences the reported results and makes comprehensive evaluation and comparison challenging. This heterogeneity concerns in particular the choice of datasets, evaluation methodologies, and performance metrics. In this paper, we propose a unified framework designed to establish standardization in the validation of EEG-based seizure detection algorithms. Based on existing guidelines and recommendations, the framework introduces a set of recommendations and standards related to datasets, file formats, EEG data input content, seizure annotation input and output, cross-validation strategies, and performance metrics. We also propose the EEG 10-20 seizure detection benchmark, a machine-learning benchmark based on public datasets converted to a standardized format. This benchmark defines the machine-learning task as well as reporting metrics. We illustrate the use of the benchmark by evaluating a set of existing seizure detection algorithms. The SzCORE (Seizure Community Open-Source Research Evaluation) framework and benchmark are made publicly available along with an open-source software library to facilitate research use, while enabling rigorous evaluation of the clinical significance of the algorithms, fostering a collective effort to more optimally detect seizures to improve the lives of people with epilepsy.
随着动态和长期脑电图(EEG)监测的使用日益增加,对基于脑电图的高质量自动癫痫发作检测算法的需求变得愈发迫切。这些算法验证方法的异质性影响了报告结果,使得全面评估和比较具有挑战性。这种异质性尤其涉及数据集的选择、评估方法和性能指标。在本文中,我们提出了一个统一框架,旨在为基于脑电图的癫痫发作检测算法的验证建立标准化。基于现有指南和建议,该框架引入了一组与数据集、文件格式、脑电图数据输入内容、癫痫发作注释输入和输出、交叉验证策略以及性能指标相关的建议和标准。我们还提出了EEG 10 - 20癫痫发作检测基准,这是一个基于转换为标准化格式的公共数据集的机器学习基准。该基准定义了机器学习任务以及报告指标。我们通过评估一组现有的癫痫发作检测算法来说明该基准的使用。SzCORE(癫痫发作社区开源研究评估)框架和基准与一个开源软件库一起公开提供,以促进研究使用,同时能够对算法的临床意义进行严格评估,促进集体努力以更优化地检测癫痫发作,改善癫痫患者的生活。