Suppr超能文献

基于体素形态学的脊髓超声定位显微镜深度学习运动校正

VoxelMorph-Based Deep Learning Motion Correction for Ultrasound Localization Microscopy of Spinal Cord.

作者信息

Yu Junjin, Cai Yang, Zeng Zhili, Xu Kailiang

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Dec;71(12: Breaking the Resolution Barrier in Ultrasound):1752-1764. doi: 10.1109/TUFFC.2024.3463188. Epub 2025 Jan 8.

Abstract

Accurate assessment of spinal cord vasculature is important for the urgent diagnosis of injury and subsequent treatment. Ultrasound localization microscopy (ULM) offers super-resolution imaging of microvasculature by localizing and tracking individual microbubbles (MBs) across multiple frames. However, a long data acquisition often involves significant motion artifacts caused by breathing and heartbeat, which further impairs the resolution of ULM. This effect is particularly pronounced in spinal cord imaging due to respiratory movement. We propose a VoxelMorph-based deep learning (DL) motion correction method to enhance the ULM performance in spinal cord imaging. Simulations were conducted to demonstrate the motion estimation accuracy of the proposed method, achieving a mean absolute error of m. Results from in vivo experiments show that the proposed method efficiently compensates for rigid and nonrigid motion, providing improved resolution with smaller vascular diameters and enhanced microvessel reconstruction after motion correction. Nonrigid deformation fields with varying displacement magnitudes were applied to in vivo data for assessing the robustness of the algorithm.

摘要

准确评估脊髓血管系统对于损伤的紧急诊断和后续治疗至关重要。超声定位显微镜(ULM)通过在多个帧中定位和跟踪单个微泡(MBs)来提供微血管系统的超分辨率成像。然而,长时间的数据采集通常会涉及由呼吸和心跳引起的显著运动伪影,这进一步损害了ULM的分辨率。由于呼吸运动,这种影响在脊髓成像中尤为明显。我们提出了一种基于VoxelMorph的深度学习(DL)运动校正方法,以提高ULM在脊髓成像中的性能。进行了模拟以证明所提出方法的运动估计准确性,实现了平均绝对误差为m。体内实验结果表明,所提出的方法有效地补偿了刚性和非刚性运动,在运动校正后提供了更高的分辨率,更小的血管直径和增强的微血管重建。将具有不同位移幅度的非刚性变形场应用于体内数据,以评估算法的鲁棒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验