Suppr超能文献

AMD-SD:用于湿性 AMD 病变分割的光学相干断层扫描图像数据集。

AMD-SD: An Optical Coherence Tomography Image Dataset for wet AMD Lesions Segmentation.

机构信息

Ophthalmic Center, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, P. R. China.

Shenzhen International Graduate School, Tsinghua University, Lishui Rd, Shenzhen, 518055, Guangdong, P. R. China.

出版信息

Sci Data. 2024 Sep 18;11(1):1014. doi: 10.1038/s41597-024-03844-6.

Abstract

Wet Age-related Macular Degeneration (wet AMD) is a common ophthalmic disease that significantly impacts patients' vision. Optical coherence tomography (OCT) examination has been widely utilized for diagnosing, treating, and monitoring wet AMD due to its cost-effectiveness, non-invasiveness, and repeatability, positioning it as the most valuable tool for diagnosis and tracking. OCT can provide clear visualization of retinal layers and precise segmentation of lesion areas, facilitating the identification and quantitative analysis of abnormalities. However, the lack of high-quality datasets for assessing wet AMD has impeded the advancement of related algorithms. To address this issue, we have curated a comprehensive wet AMD OCT Segmentation Dataset (AMD-SD), comprising 3049 B-scan images from 138 patients, each annotated with five segmentation labels: subretinal fluid, intraretinal fluid, ellipsoid zone continuity, subretinal hyperreflective material, and pigment epithelial detachment. This dataset presents a valuable opportunity to investigate the accuracy and reliability of various segmentation algorithms for wet AMD, offering essential data support for developing AI-assisted clinical applications targeting wet AMD.

摘要

湿性年龄相关性黄斑变性(湿性 AMD)是一种常见的眼部疾病,严重影响患者的视力。由于其具有成本效益、非侵入性和可重复性,光学相干断层扫描(OCT)检查已被广泛用于诊断、治疗和监测湿性 AMD,成为诊断和跟踪的最有价值的工具。OCT 可以提供视网膜层的清晰可视化和病变区域的精确分割,有助于识别和定量分析异常。然而,缺乏用于评估湿性 AMD 的高质量数据集阻碍了相关算法的发展。为了解决这个问题,我们整理了一个全面的湿性 AMD OCT 分割数据集(AMD-SD),包含来自 138 名患者的 3049 个 B 扫描图像,每个图像都标注了五个分割标签:视网膜下液、视网膜内液、椭圆体带连续性、视网膜下高反射物质和色素上皮脱离。这个数据集为研究各种用于湿性 AMD 的分割算法的准确性和可靠性提供了宝贵的机会,为开发针对湿性 AMD 的人工智能辅助临床应用提供了必要的数据支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d82f/11410981/2e53b6fe32a1/41597_2024_3844_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验