Suppr超能文献

基于 AISSO 深度概念和超参数调整过程的序列基 PPI 预测智能模型。

Intelligence model on sequence-based prediction of PPI using AISSO deep concept with hyperparameter tuning process.

机构信息

DCSA, Maharshi Dayanand University, Rohtak, Haryana, India.

Arba Minch University, Arba Minch, Ethiopia.

出版信息

Sci Rep. 2024 Sep 18;14(1):21797. doi: 10.1038/s41598-024-72558-x.

Abstract

Protein-protein interaction (PPI) prediction is vital for interpreting biological activities. Even though many diverse sorts of data and machine learning approaches have been employed in PPI prediction, performance still has to be enhanced. As a result, we adopted an Aquilla Influenced Shark Smell (AISSO)-based hybrid prediction technique to construct a sequence-dependent PPI prediction model. This model has two stages of operation: feature extraction and prediction. Along with sequence-based and Gene Ontology features, unique features were produced in the feature extraction stage utilizing the improved semantic similarity technique, which may deliver reliable findings. These collected characteristics were then sent to the prediction step, and hybrid neural networks, such as the Improved Recurrent Neural Network and Deep Belief Networks, were used to predict the PPI using modified score level fusion. These neural networks' weight variables were adjusted utilizing a unique optimal methodology called Aquila Influenced Shark Smell (AISSO), and the outcomes showed that the developed model had attained an accuracy of around 88%, which is much better than the traditional methods; this model AISSO-based PPI prediction can provide precise and effective predictions.

摘要

蛋白质-蛋白质相互作用(PPI)预测对于解释生物活性至关重要。尽管已经采用了许多不同类型的数据和机器学习方法进行 PPI 预测,但仍需要提高性能。因此,我们采用了基于 Aquilla Influenced Shark Smell(AISSO)的混合预测技术来构建基于序列的 PPI 预测模型。该模型有两个操作阶段:特征提取和预测。在特征提取阶段,除了基于序列和基因本体的特征外,还利用改进的语义相似性技术生成了独特的特征,这可能会提供可靠的发现。然后,将这些收集到的特征发送到预测步骤,使用改进的递归神经网络和深度置信网络等混合神经网络来预测 PPI,并使用改进的评分级融合方法进行预测。利用一种名为 Aquilla Influenced Shark Smell(AISSO)的独特优化方法调整这些神经网络的权重变量,结果表明,所开发的模型的准确率约为 88%,明显优于传统方法;该模型基于 AISSO 的 PPI 预测可以提供精确有效的预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d33b/11410825/b87847f79c5b/41598_2024_72558_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验