Suppr超能文献

在LiNiMnCoO表面由绝缘残留锂化合物生成的导电LiPO界面可改善循环寿命并有助于快速循环。

Conducting LiPO Interface Generated From Insulating Residual Lithium Compounds on LiNiMnCoO Surface Improves Cycle Life and Assists in Fast Cycling.

作者信息

Dutta Jyotirekha, Ghosh Shuvajit, Garlapati Kiran Kumar, Martha Surendra K

机构信息

Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad, Telangana, 502284, India.

Center for Interdisciplinary Programs, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad, Telangana, 502284, India.

出版信息

Small. 2024 Dec;20(49):e2405432. doi: 10.1002/smll.202405432. Epub 2024 Sep 19.

Abstract

LiNiMnCoO (NMC811) is the most promising cathode material for future Li-ion batteries (LIBs). However, the bulk and surface structural instabilities retard its commercial success. Surface chemical instability toward exposure to moisture (HO and CO) leads to the formation of residual lithium compounds (RLCs: LiCO, LiOH) on the surface. The alkaline RLCs form a resistive layer on the surface of NMC811 by undergoing parasitic side reactions with electrolytes. Herein, an "Adverse-to-Beneficial" approach is proposed to eliminate RLCs by chemically transforming them into a LiPO (LiPO and LiPO) interface. The interface protects the NMC811 surface from moisture attack and unwanted side reactions with electrolytes. It enhances the cycle life by retaining 70% of the initial capacity after 300 cycles at a 0.5C rate and 60% after 500 cycles, even at a 5C rate in a voltage window of 3.0-4.3 V versus Li/Li. The coexistence of two Li-conducting phases lowers the voltage polarization of the kinetically sluggish H1 → M phase transition to unlock fast cycling, reduces cationic disorder, improves coulombic efficiency, enhances ion diffusion kinetics, and minimizes particle crack formation after long-term cycling. Hence, the LiPO interface yields multifaceted benefits in the storage, processing, and electrochemistry of NMC811.

摘要

锂镍锰钴氧化物(NMC811)是未来锂离子电池(LIBs)最具前景的正极材料。然而,体相和表面结构的不稳定性阻碍了其商业应用的成功。表面对水分(H₂O和CO₂)的化学不稳定性会导致在表面形成残留锂化合物(RLCs:Li₂CO₃、LiOH)。碱性的RLCs通过与电解质发生寄生副反应,在NMC811表面形成电阻层。在此,提出了一种“从不利到有利”的方法,通过将RLCs化学转化为Li₃PO₄(Li₃PO₄和LiPO₂)界面来消除它们。该界面可保护NMC811表面免受水分侵蚀以及与电解质发生不必要的副反应。在3.0 - 4.3 V(相对于Li/Li⁺)的电压窗口下,以0.5C倍率循环300次后,它能保持初始容量的70%,以5C倍率循环500次后能保持60%,从而延长了循环寿命。两种锂导电相的共存降低了动力学缓慢的H1→M相变的电压极化,以实现快速循环,减少阳离子无序,提高库仑效率,增强离子扩散动力学,并使长期循环后颗粒裂纹形成最小化。因此,Li₃PO₄界面在NMC811的存储、加工和电化学方面带来了多方面的益处。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验