Tajabadi Mohammad, Martin Roman, Heider Dominik
Institute of Computer Science, Heinrich-Heine-University Duesseldorf, Graf-Adolf-Str. 63, Duesseldorf, 40215, North Rhine-Westphalia, Germany.
Center for Digital Medicine, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, Duesseldorf, 40215, North Rhine-Westphalia, Germany.
Comput Struct Biotechnol J. 2024 Aug 30;23:3281-3287. doi: 10.1016/j.csbj.2024.08.024. eCollection 2024 Dec.
In recent years, decentralized machine learning has emerged as a significant advancement in biomedical applications, offering robust solutions for data privacy, security, and collaboration across diverse healthcare environments. In this review, we examine various decentralized learning methodologies, including federated learning, split learning, swarm learning, gossip learning, edge learning, and some of their applications in the biomedical field. We delve into the underlying principles, network topologies, and communication strategies of each approach, highlighting their advantages and limitations. Ultimately, the selection of a suitable method should be based on specific needs, infrastructures, and computational capabilities.
近年来,去中心化机器学习已成为生物医学应用中的一项重大进展,为跨多种医疗环境的数据隐私、安全和协作提供了强大的解决方案。在本综述中,我们研究了各种去中心化学习方法,包括联邦学习、分割学习、群体学习、八卦学习、边缘学习,以及它们在生物医学领域的一些应用。我们深入探讨了每种方法的基本原理、网络拓扑和通信策略,突出了它们的优点和局限性。最终,合适方法的选择应基于特定需求、基础设施和计算能力。