Ribeiro Adèle Helena, Soler Júlia M P, Corder Rodrigo M, Ferreira Marcelo U, Heider Dominik
Institute of Medical Informatics, University of Münster, Münster, Germany.
Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil.
Front Genet. 2025 May 16;16:1599826. doi: 10.3389/fgene.2025.1599826. eCollection 2025.
With an estimated 263 million cases recorded worldwide in 2023, malaria remains a major global health challenge, particularly in tropical regions with limited healthcare access. Beyond its health impact, malaria disrupts education, economic development, and social equality. While traditional research has focused on biological factors underlying human-mosquito interactions, growing evidence highlights the complex interplay of environmental, behavioral, and socioeconomic factors, alongside mobility and both human and parasite genetics, in shaping transmission dynamics, recurrence patterns, and control effectiveness. This work shows how integrating Artificial Intelligence (AI), Machine Learning (ML), and Causal Inference can advance malaria research by identifying context-specific risk factors, uncovering causal mechanisms, and informing more effective, targeted interventions. Drawing on the Mâncio Lima cohort, a longitudinal, multimodal study of malaria risk in Brazil's main urban hotspot, and related studies in the Amazon, we highlight how rigorous, data-driven approaches can address the substantial variability in malaria risk across individuals and communities. AI-driven methods facilitate the integration of diverse high-dimensional datasets to uncover intricate patterns and improve individual risk stratification. Federated learning enables collaborative analysis across regions while preserving data privacy. Meanwhile, causal discovery and effect identification tools further strengthen these approaches by distinguishing genuine causal relationships from spurious associations. Together, these approaches offer a principled, scalable, and privacy-preserving framework that enables researchers to move beyond predictive modeling toward actionable causal insights. This shift supports precision public health strategies tailored to vulnerable populations, fostering more equitable and sustainable malaria control and contributing to the reduction of the global malaria burden.
2023年,全球估计记录了2.63亿例疟疾病例,疟疾仍然是一项重大的全球卫生挑战,尤其是在医疗服务有限的热带地区。除了对健康产生影响外,疟疾还扰乱教育、经济发展和社会平等。虽然传统研究主要关注人类与蚊子相互作用的生物学因素,但越来越多的证据表明,环境、行为和社会经济因素,以及流动性、人类和寄生虫遗传学之间复杂的相互作用,对传播动态、复发模式和控制效果产生影响。这项研究表明,整合人工智能(AI)、机器学习(ML)和因果推断如何通过识别特定背景下的风险因素、揭示因果机制以及为更有效、有针对性的干预措施提供依据,推动疟疾研究。借鉴曼西奥·利马队列研究(巴西主要城市热点地区疟疾风险的纵向多模式研究)以及亚马逊地区的相关研究,我们强调了严谨的数据驱动方法如何应对个体和社区间疟疾风险的巨大差异。人工智能驱动的方法有助于整合各种高维数据集,以揭示复杂模式并改善个体风险分层。联邦学习能够在保护数据隐私的同时,实现跨区域的协作分析。同时,因果发现和效应识别工具通过区分真实因果关系与虚假关联,进一步加强了这些方法。这些方法共同提供了一个有原则、可扩展且保护隐私的框架,使研究人员能够超越预测建模,获得可采取行动的因果见解。这种转变支持针对弱势群体的精准公共卫生策略,促进更公平、可持续的疟疾控制,并有助于减轻全球疟疾负担。