Suppr超能文献

用于光刻的全氟和多氟烷基物质(PFAS)与蛋白质相互作用的高通量筛选。

High-throughput screening of protein interactions with per- and polyfluoroalkyl substances (PFAS) used in photolithography.

作者信息

Cao Yuexin, Ng Carla A

机构信息

Department of Civil & Environmental Engineering, University of Pittsburgh, 3700 O'Hara St., Pittsburgh, PA 15261, USA.

Department of Civil & Environmental Engineering, University of Pittsburgh, 3700 O'Hara St., Pittsburgh, PA 15261, USA; Department of Environmental and Occupational Health, University of Pittsburgh, 3700 O'Hara St., Pittsburgh, PA 15261, USA.

出版信息

J Hazard Mater. 2025 Apr 5;487:137235. doi: 10.1016/j.jhazmat.2025.137235. Epub 2025 Jan 15.

Abstract

Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals used extensively across industries, including semiconductor manufacturing. Semiconductors are ubiquitous, and there is increasing global demand for semiconductors, e.g., for advanced technologies and the automotive industry. Despite their extensive use, the toxicity and bioaccumulation potential of PFAS used in photolithography, a critical process in semiconductor manufacturing, remain poorly understood. Moreover, most lack experimental data and standards for testing. Here, we identified 96 photolithography-relevant PFAS and developed a computational framework to evaluate their potential hazards through protein binding. By integrating molecular dynamics (MD) and docking, we predicted the binding affinities and positions of PFAS to five proteins-liver fatty acid binding protein (LFABP), serum albumin (SA), peroxisome proliferator-activated receptors α and γ (PPARα and PPARγ), and transthyretin (TTR). These proteins were chosen as their binding with PFAS has been linked to PFAS bioaccumulation and to hepatic, reproductive, developmental, and endocrine disruption. Comparisons with empirical data demonstrated our approach balances simulation speed and robustness, better estimating absolute and relative binding affinities than docking alone. PFAS-protein binding affinities were generally positively associated with fluorinated chain length and the presence of aromatic rings, but limited by the protein binding pocket dimensions. Notably, we identified 22 PFAS with stronger predicted binding than perfluorooctane sulfonic acid (PFOS), a known hazardous PFAS, to at least one target protein, suggesting the potential for toxicological concern. By enabling proactive evaluation of PFAS that are unavailable for experimental testing, this work contributes to safeguarding environmental and human health amidst rising semiconductor demands.

摘要

全氟和多氟烷基物质(PFAS)是在包括半导体制造在内的多个行业中广泛使用的合成化学品。半导体无处不在,全球对半导体的需求也在不断增加,例如对先进技术和汽车行业的需求。尽管PFAS被广泛使用,但在半导体制造的关键工艺光刻中使用的PFAS的毒性和生物累积潜力仍知之甚少。此外,大多数缺乏实验数据和测试标准。在这里,我们识别出96种与光刻相关的PFAS,并开发了一个计算框架,通过蛋白质结合来评估它们的潜在危害。通过整合分子动力学(MD)和对接,我们预测了PFAS与五种蛋白质——肝脏脂肪酸结合蛋白(LFABP)、血清白蛋白(SA)、过氧化物酶体增殖物激活受体α和γ(PPARα和PPARγ)以及转甲状腺素蛋白(TTR)的结合亲和力和结合位置。选择这些蛋白质是因为它们与PFAS的结合与PFAS的生物累积以及肝脏、生殖、发育和内分泌干扰有关。与实验数据的比较表明,我们的方法在模拟速度和稳健性之间取得了平衡,比单独的对接能更好地估计绝对和相对结合亲和力。PFAS与蛋白质的结合亲和力通常与氟化链长度和芳香环的存在呈正相关,但受到蛋白质结合口袋尺寸的限制。值得注意的是,我们识别出22种PFAS,其预测结合力比已知有害的PFAS全氟辛烷磺酸(PFOS)对至少一种靶蛋白的结合力更强,这表明存在毒理学问题的可能性。通过对无法进行实验测试的PFAS进行前瞻性评估,这项工作有助于在半导体需求不断上升的情况下保障环境和人类健康。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验