Suppr超能文献

基于堆叠式粗到细模型的自适应放疗中的伪CT合成:结合扩散过程和空间频率卷积

Pseudo-CT synthesis in adaptive radiotherapy based on a stacked coarse-to-fine model: Combing diffusion process and spatial-frequency convolutions.

作者信息

Sun Hongfei, Sun Xiaohuan, Li Jie, Zhu Jiarui, Yang Zhi, Meng Fan, Liu Yufen, Gong Jie, Wang Zhongfei, Yin Yutian, Ren Ge, Cai Jing, Zhao Lina

机构信息

Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.

Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China.

出版信息

Med Phys. 2024 Dec;51(12):8979-8998. doi: 10.1002/mp.17402. Epub 2024 Sep 19.

Abstract

BACKGROUND

Cone beam computed tomography (CBCT) provides critical anatomical information for adaptive radiotherapy (ART), especially for tumors in the pelvic region that undergo significant deformation. However, CBCT suffers from inaccurate Hounsfield Unit (HU) values and lower soft tissue contrast. These issues affect the accuracy of pelvic treatment plans and implementation of the treatment, hence requiring correction.

PURPOSE

A novel stacked coarse-to-fine model combining Denoising Diffusion Probabilistic Model (DDPM) and spatial-frequency domain convolution modules is proposed to enhance the imaging quality of CBCT images.

METHODS

The enhancement of low-quality CBCT images is divided into two stages. In the coarse stage, the improved DDPM with U-ConvNeXt architecture is used to complete the denoising task of CBCT images. In the fine stage, the deep convolutional network model jointly constructed by fast Fourier and dilated convolution modules is used to further enhance the image quality in local details and global imaging. Finally, the accurate pseudo-CT (pCT) images consistent with the size of the original data are obtained. Two hundred fifty paired CBCT-CT images from cervical and rectal cancer, combined with 200 public dataset cases, were used collectively for training, validation, and testing.

RESULTS

To evaluate the anatomical consistency between pCT and real CT, we have used the mean(std) of structure similarity index measure (SSIM), peak signal to noise ratio (PSNR), and normalized cross-correlation (NCC). The numerical results for the above three metrics comparing the pCT synthesized by the proposed model against real CT for cervical cancer cases were 87.14% (2.91%), 34.02 dB (1.35 dB), and 88.01% (1.82%), respectively. For rectal cancer cases, the corresponding results were 86.06% (2.70%), 33.50 dB (1.41 dB), and 87.44% (1.95%). The paired t-test analysis between the proposed model and the comparative models (ResUnet, CycleGAN, DDPM, and DDIM) for these metrics revealed statistically significant differences (p < 0.05). The visual results also showed that the anatomical structures between the real CT and the pCT synthesized by the proposed model were closer. For the dosimetric verification, mean absolute error of dosimetry (MAE) values for the maximum dose (D), the minimum dose (D), and the mean dose (D) in the planning target volume (PTV) were analyzed, with results presented as mean (lower quartile, upper quartile). The experimental results show that the values of the above three dosimetry indexes (D, D, and D) for the pCT images synthesized by the proposed model were 0.90% (0.48%, 1.29%), 0.82% (0.47%, 1.17%), and 0.57% (0.44%, 0.67%). Compared with 10 cases of the original CBCT image by Mann-Whitney test (p < 0.05), it also proved that pCT can significantly improve the accuracy of HU values for the dose calculation.

CONCLUSION

The pCT synthesized by the proposed model outperforms the comparative models in numerical accuracy and visualization, promising for ART of pelvic cancers.

摘要

背景

锥形束计算机断层扫描(CBCT)为自适应放疗(ART)提供关键的解剖学信息,特别是对于盆腔区域发生显著变形的肿瘤。然而,CBCT存在Hounsfield单位(HU)值不准确和软组织对比度较低的问题。这些问题影响盆腔治疗计划的准确性和治疗的实施,因此需要进行校正。

目的

提出一种结合去噪扩散概率模型(DDPM)和空间频域卷积模块的新型堆叠式粗到细模型,以提高CBCT图像的成像质量。

方法

低质量CBCT图像的增强分为两个阶段。在粗阶段,使用具有U-ConvNeXt架构的改进DDPM完成CBCT图像的去噪任务。在细阶段,使用由快速傅里叶和扩张卷积模块联合构建的深度卷积网络模型进一步增强局部细节和全局成像中的图像质量。最后,获得与原始数据大小一致的准确伪CT(pCT)图像。来自宫颈癌和直肠癌的250对CBCT-CT图像,结合200个公共数据集病例,共同用于训练、验证和测试。

结果

为了评估pCT与真实CT之间的解剖学一致性,我们使用了结构相似性指数测量(SSIM)、峰值信噪比(PSNR)和归一化互相关(NCC)的均值(标准差)。将所提出模型合成的pCT与宫颈癌病例的真实CT进行比较,上述三个指标的数值结果分别为87.14%(2.91%)、34.02 dB(1.35 dB)和88.01%(1.82%)。对于直肠癌病例,相应结果分别为86.06%(2.70%)、33.50 dB(1.41 dB)和87.44%(1.95%)。对这些指标在该模型与对比模型(ResUnet、CycleGAN、DDPM和DDIM)之间进行配对t检验分析,结果显示存在统计学显著差异(p < 0.05)。视觉结果还表明,真实CT与所提出模型合成的pCT之间的解剖结构更接近。对于剂量验证,分析了计划靶体积(PTV)中最大剂量(D)、最小剂量(D)和平均剂量(D)的剂量测定平均绝对误差(MAE)值,结果表示为均值(下四分位数,上四分位数)。实验结果表明,所提出模型合成的pCT图像的上述三个剂量测定指标(D、D和D)的值分别为0.90%(0.48%,1.29%)、0.82%(0.47%,1.17%)和0.57%((0.44%,0.67%)。通过Mann-Whitney检验与10例原始CBCT图像比较(p < 0.05),也证明了pCT可以显著提高剂量计算中HU值的准确性。

结论

所提出模型合成的pCT在数值准确性和可视化方面优于对比模型,有望用于盆腔癌的ART。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验