Graduate School of Business IT, Kookmin University, Seoul, Republic of Korea.
School of Social Work, University of North Carolina Charlotte, Charlotte, NC, United States.
JMIR Form Res. 2024 Sep 19;8:e41093. doi: 10.2196/41093.
The aging population and the shortage of geriatric care workers are major global concerns. Socially assistive robots (SARs) have the potential to address these issues, but developing SARs for various types of users is still in its infancy.
This study aims to examine the characteristics and use patterns of SARs.
This study analyzed log data from 64 older adults who used a SAR called Hyodol for 60 days to understand use patterns and their relationship with user characteristics. Data on user interactions, robot-assisted content use, demographics, physical and mental health, and lifestyle were collected. Time series clustering was used to group users based on use patterns, followed by profiling analysis to relate these patterns to user characteristics.
Overall, 4 time series clusters were created based on use patterns: helpers, friends, short-term users, and long-term users. Time series and profiling analyses revealed distinct patterns for each group. We found that older adults use SARs differently based on factors beyond demographics and health. This study demonstrates a data-driven approach to understanding user needs, and the findings can help tailor SAR interventions for specific user groups.
This study extends our understanding of the factors associated with the long-term use of SARs for geriatric care and makes methodological contributions.
人口老龄化和老年护理人员短缺是全球关注的主要问题。社交辅助机器人(SAR)有潜力解决这些问题,但为各种类型的用户开发 SAR 仍处于起步阶段。
本研究旨在考察 SAR 的特点和使用模式。
本研究分析了 64 名使用名为 Hyodol 的 SAR 长达 60 天的老年人的日志数据,以了解使用模式及其与用户特征的关系。收集了用户交互、机器人辅助内容使用、人口统计学、身心健康和生活方式的数据。使用时间序列聚类根据使用模式对用户进行分组,然后进行分析以将这些模式与用户特征联系起来。
总体而言,根据使用模式创建了 4 个时间序列聚类:助手、朋友、短期用户和长期用户。时间序列和分析分析揭示了每个组的不同模式。我们发现,老年人根据人口统计学和健康因素以外的因素使用 SAR 的方式不同。本研究展示了一种数据驱动的方法来了解用户需求,研究结果可以帮助针对特定用户群体定制 SAR 干预措施。
本研究扩展了我们对与老年护理中 SAR 长期使用相关因素的理解,并做出了方法学贡献。