Suppr超能文献

深度学习在肾细胞癌检测和预后评估中的诊断准确性:一项系统评价和荟萃分析。

Diagnostic accuracy of deep learning in detection and prognostication of renal cell carcinoma: a systematic review and meta-analysis.

作者信息

Chandramohan Deepak, Garapati Hari Naga, Nangia Udit, Simhadri Prathap K, Lapsiwala Boney, Jena Nihar K, Singh Prabhat

机构信息

Department of Nephrology, The University of Alabama at Birmingham, Birmingham, AL, United States.

Department of Nephrology, Baptist Medical Center South, Montgomery, AL, United States.

出版信息

Front Med (Lausanne). 2024 Sep 5;11:1447057. doi: 10.3389/fmed.2024.1447057. eCollection 2024.

Abstract

INTRODUCTION

The prevalence of Renal cell carcinoma (RCC) is increasing among adults. Histopathologic samples obtained after surgical resection or from biopsies of a renal mass require subtype classification for diagnosis, prognosis, and to determine surveillance. Deep learning in artificial intelligence (AI) and pathomics are rapidly advancing, leading to numerous applications such as histopathological diagnosis. In our meta-analysis, we assessed the pooled diagnostic performances of deep neural network (DNN) frameworks in detecting RCC subtypes and to predicting survival.

METHODS

A systematic search was done in PubMed, Google Scholar, Embase, and Scopus from inception to November 2023. The random effects model was used to calculate the pooled percentages, mean, and 95% confidence interval. Accuracy was defined as the number of cases identified by AI out of the total number of cases, i.e. (True Positive + True Negative)/(True Positive + True Negative + False Positive + False Negative). The heterogeneity between study-specific estimates was assessed by the statistic. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used to conduct and report the analysis.

RESULTS

The search retrieved 347 studies; 13 retrospective studies evaluating 5340 patients were included in the final analysis. The pooled performance of the DNN was as follows: accuracy 92.3% (95% CI: 85.8-95.9; = 98.3%), sensitivity 97.5% (95% CI: 83.2-99.7; = 92%), specificity 89.2% (95% CI: 29.9-99.4; = 99.6%) and area under the curve 0.91 (95% CI: 0.85-0.97.3; = 99.6%). Specifically, their accuracy in RCC subtype detection was 93.5% (95% CI: 88.7-96.3; = 92%), and the accuracy in survival analysis prediction was 81% (95% CI: 67.8-89.6; = 94.4%).

DISCUSSION

The DNN showed excellent pooled diagnostic accuracy rates to classify RCC into subtypes and grade them for prognostic purposes. Further studies are required to establish generalizability and validate these findings on a larger scale.

摘要

引言

肾细胞癌(RCC)在成年人中的患病率正在上升。手术切除后或肾肿块活检获得的组织病理学样本需要进行亚型分类,以用于诊断、预后评估以及确定监测方案。人工智能(AI)中的深度学习和病理组学正在迅速发展,催生了许多应用,如组织病理学诊断。在我们的荟萃分析中,我们评估了深度神经网络(DNN)框架在检测RCC亚型和预测生存方面的综合诊断性能。

方法

从创刊至2023年11月,在PubMed、谷歌学术、Embase和Scopus中进行了系统检索。采用随机效应模型计算合并百分比、均值和95%置信区间。准确率定义为AI识别出的病例数占病例总数的比例,即(真阳性+真阴性)/(真阳性+真阴性+假阳性+假阴性)。通过I²统计量评估各研究特异性估计值之间的异质性。采用系统评价和荟萃分析的首选报告项目(PRISMA)指南进行并报告分析。

结果

检索到347项研究;最终分析纳入了13项评估5340例患者的回顾性研究。DNN的综合性能如下:准确率92.3%(95%CI:85.8 - 95.9;I² = 98.3%),敏感性97.5%(95%CI:83.2 - 99.7;I² = 92%),特异性89.2%(95%CI:29.9 - 99.4;I² = 99.6%),曲线下面积0.91(95%CI:0.85 - 0.97.3;I² = 99.6%)。具体而言,它们在RCC亚型检测中的准确率为93.5%(95%CI:88.7 - 96.3;I² = 92%),在生存分析预测中的准确率为81%(95%CI:67.8 - 89.6;I² = 94.4%)。

讨论

DNN在将RCC分类为亚型并对其进行预后分级方面显示出优异的综合诊断准确率。需要进一步研究以确定其普遍性并在更大规模上验证这些发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bd9/11412207/03d619d3fe76/fmed-11-1447057-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验