Suppr超能文献

深度学习可直接从肾透明细胞癌的组织学预测生存情况。

Deep learning can predict survival directly from histology in clear cell renal cell carcinoma.

机构信息

Digital Biomarkers for Oncology Group, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany.

Department of Urology & Urological Surgery, Medical Faculty Mannheim of Heidelberg University, University Medical Center Mannheim, Mannheim, Germany.

出版信息

PLoS One. 2022 Aug 17;17(8):e0272656. doi: 10.1371/journal.pone.0272656. eCollection 2022.

Abstract

For clear cell renal cell carcinoma (ccRCC) risk-dependent diagnostic and therapeutic algorithms are routinely implemented in clinical practice. Artificial intelligence-based image analysis has the potential to improve outcome prediction and thereby risk stratification. Thus, we investigated whether a convolutional neural network (CNN) can extract relevant image features from a representative hematoxylin and eosin-stained slide to predict 5-year overall survival (5y-OS) in ccRCC. The CNN was trained to predict 5y-OS in a binary manner using slides from TCGA and validated using an independent in-house cohort. Multivariable logistic regression was used to combine of the CNNs prediction and clinicopathological parameters. A mean balanced accuracy of 72.0% (standard deviation [SD] = 7.9%), sensitivity of 72.4% (SD = 10.6%), specificity of 71.7% (SD = 11.9%) and area under receiver operating characteristics curve (AUROC) of 0.75 (SD = 0.07) was achieved on the TCGA training set (n = 254 patients / WSIs) using 10-fold cross-validation. On the external validation cohort (n = 99 patients / WSIs), mean accuracy, sensitivity, specificity and AUROC were 65.5% (95%-confidence interval [CI]: 62.9-68.1%), 86.2% (95%-CI: 81.8-90.5%), 44.9% (95%-CI: 40.2-49.6%), and 0.70 (95%-CI: 0.69-0.71). A multivariable model including age, tumor stage and metastasis yielded an AUROC of 0.75 on the TCGA cohort. The inclusion of the CNN-based classification (Odds ratio = 4.86, 95%-CI: 2.70-8.75, p < 0.01) raised the AUROC to 0.81. On the validation cohort, both models showed an AUROC of 0.88. In univariable Cox regression, the CNN showed a hazard ratio of 3.69 (95%-CI: 2.60-5.23, p < 0.01) on TCGA and 2.13 (95%-CI: 0.92-4.94, p = 0.08) on external validation. The results demonstrate that the CNN's image-based prediction of survival is promising and thus this widely applicable technique should be further investigated with the aim of improving existing risk stratification in ccRCC.

摘要

对于透明细胞肾细胞癌 (ccRCC),临床实践中通常会实施基于风险的诊断和治疗算法。基于人工智能的图像分析有可能改善预后预测,从而进行风险分层。因此,我们研究了卷积神经网络 (CNN) 是否可以从代表性的苏木精和伊红染色幻灯片中提取相关的图像特征,以预测 ccRCC 的 5 年总生存率 (5y-OS)。该 CNN 经过训练,可使用 TCGA 的幻灯片以二分类的方式预测 5y-OS,并在独立的内部队列中进行验证。多变量逻辑回归用于结合 CNN 的预测和临床病理参数。使用 10 倍交叉验证在 TCGA 训练集 (n = 254 例患者 / WSI) 上获得了 72.0% (标准偏差 [SD] = 7.9%) 的平均平衡准确率、72.4% (SD = 10.6%) 的敏感性、71.7% (SD = 11.9%) 的特异性和 0.75 (SD = 0.07) 的接收器工作特征曲线 (AUROC)。在外部验证队列 (n = 99 例患者 / WSI) 上,平均准确率、敏感性、特异性和 AUROC 分别为 65.5% (95%CI: 62.9-68.1%)、86.2% (95%CI: 81.8-90.5%)、44.9% (95%CI: 40.2-49.6%) 和 0.70 (95%CI: 0.69-0.71)。包含年龄、肿瘤分期和转移的多变量模型在 TCGA 队列中获得了 0.75 的 AUROC。包含基于 CNN 的分类 (优势比 = 4.86, 95%CI: 2.70-8.75, p < 0.01) 将 AUROC 提高到 0.81。在验证队列中,两种模型的 AUROC 均为 0.88。在单变量 Cox 回归中,CNN 在 TCGA 上的风险比为 3.69 (95%CI: 2.60-5.23, p < 0.01),在外部验证上为 2.13 (95%CI: 0.92-4.94, p = 0.08)。结果表明,CNN 基于图像的生存预测具有很大的前景,因此应进一步研究这种广泛适用的技术,旨在改善 ccRCC 中的现有风险分层。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fdbd/9385058/21408fc1c5f4/pone.0272656.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验