Suppr超能文献

基于增强多模态低秩嵌入的多模态阿尔茨海默病诊断特征选择模型

Enhanced Multimodal Low-Rank Embedding-Based Feature Selection Model for Multimodal Alzheimer's Disease Diagnosis.

作者信息

Chen Zhi, Liu Yongguo, Zhang Yun, Zhu Jiajing, Li Qiaoqin, Wu Xindong

出版信息

IEEE Trans Med Imaging. 2025 Feb;44(2):815-827. doi: 10.1109/TMI.2024.3464861. Epub 2025 Feb 4.

Abstract

Identification of Alzheimer's disease (AD) with multimodal neuroimaging data has been receiving increasing attention. However, the presence of numerous redundant features and corrupted neuroimages within multimodal datasets poses significant challenges for existing methods. In this paper, we propose a feature selection method named Enhanced Multimodal Low-rank Embedding (EMLE) for multimodal AD diagnosis. Unlike previous methods utilizing convex relaxations of the -norm, EMLE exploits an -norm regularized projection matrix to obtain an embedding representation and select informative features jointly for each modality. The -norm, employing an upper-bounded nonconvex Minimax Concave Penalty (MCP) function to characterize sparsity, offers a superior approximation for the -norm compared to other convex relaxations. Next, a similarity graph is learned based on the self-expressiveness property to increase the robustness to corrupted data. As the approximation coefficient vectors of samples from the same class should be highly correlated, an MCP function introduced norm, i.e., matrix -norm, is applied to constrain the rank of the graph. Furthermore, recognizing that diverse modalities should share an underlying structure related to AD, we establish a consensus graph for all modalities to unveil intrinsic structures across multiple modalities. Finally, we fuse the embedding representations of all modalities into the label space to incorporate supervisory information. The results of extensive experiments on the Alzheimer's Disease Neuroimaging Initiative datasets verify the discriminability of the features selected by EMLE.

摘要

利用多模态神经影像数据识别阿尔茨海默病(AD)受到了越来越多的关注。然而,多模态数据集中存在大量冗余特征和损坏的神经影像,这给现有方法带来了重大挑战。在本文中,我们提出了一种名为增强多模态低秩嵌入(EMLE)的特征选择方法用于多模态AD诊断。与以往利用 -范数的凸松弛的方法不同,EMLE利用一个 -范数正则化投影矩阵来获得嵌入表示,并为每个模态联合选择信息性特征。 -范数采用上界非凸极小极大凹惩罚(MCP)函数来表征稀疏性,与其他凸松弛相比,它为 -范数提供了更好的近似。接下来,基于自表达特性学习一个相似性图,以提高对损坏数据的鲁棒性。由于同一类样本的近似系数向量应该高度相关,因此应用引入范数的MCP函数,即矩阵 -范数,来约束图的秩。此外,认识到不同模态应该共享与AD相关的潜在结构,我们为所有模态建立一个共识图,以揭示跨多个模态的内在结构。最后,我们将所有模态的嵌入表示融合到标签空间中,以纳入监督信息。在阿尔茨海默病神经影像计划数据集上进行的大量实验结果验证了EMLE选择的特征的可辨别性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验