Dao Duy-Phuong, Yang Hyung-Jeong, Kim Jahae, Ho Ngoc-Huynh
IEEE J Biomed Health Inform. 2025 Jan;29(1):259-272. doi: 10.1109/JBHI.2024.3472462. Epub 2025 Jan 7.
Alzheimer's disease (AD) is a global neurodegenerative disorder that affects millions of individuals worldwide. Actual AD imaging datasets challenge the construction of reliable longitudinal models owing to imaging modality uncertainty. In addition, they are still unable to retain or obtain important information during disease progression from previous to followup time points. For example, the output values of current gates in recurrent models should be close to a specific value that indicates the model is uncertain about retaining or forgetting information. In this study, we propose a model which can extract and constrain each modality into a common representation space to capture intermodality interactions among different modalities associated with modality uncertainty to predict AD progression. In addition, we provide an auxiliary function to enhance the ability of recurrent gate robustly and effectively in controlling the flow of information over time using longitudinal data. We conducted comparative analysis on data from the Alzheimer's Disease Neuroimaging Initiative database. Our model outperformed other methods across all evaluation metrics. Therefore, the proposed model provides a promising solution for addressing modality uncertainty challenges in multimodal longitudinal AD progression prediction.
阿尔茨海默病(AD)是一种全球性神经退行性疾病,影响着全球数百万人。由于成像模态的不确定性,实际的AD成像数据集对构建可靠的纵向模型提出了挑战。此外,在疾病从先前时间点发展到后续时间点的过程中,它们仍然无法保留或获取重要信息。例如,循环模型中当前门的输出值应接近一个特定值,该值表明模型在保留或遗忘信息方面存在不确定性。在本研究中,我们提出了一种模型,该模型可以将每种模态提取并约束到一个公共表示空间中,以捕捉与模态不确定性相关的不同模态之间的模态间相互作用,从而预测AD的进展。此外,我们提供了一个辅助函数,以增强循环门在使用纵向数据随时间稳健有效地控制信息流方面的能力。我们对来自阿尔茨海默病神经成像倡议数据库的数据进行了比较分析。我们的模型在所有评估指标上均优于其他方法。因此,所提出的模型为解决多模态纵向AD进展预测中的模态不确定性挑战提供了一个有前景的解决方案。