Suppr超能文献

用于领域泛化的连续解缠关节空间学习

Continuous Disentangled Joint Space Learning for Domain Generalization.

作者信息

Wang Zizhou, Wang Yan, Feng Yangqin, Du Jiawei, Liu Yong, Goh Rick Siow Mong, Zhen Liangli

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Sep 20;PP. doi: 10.1109/TNNLS.2024.3454689.

Abstract

Domain generalization (DG) aims to learn a model on one or multiple observed source domains that can generalize to unseen target test domains. Previous approaches have focused on extracting domain-invariant information from multiple source domains, but domain-specific information is also closely tied to semantics in individual domains and is not well-suited for generalization to the target domain. In this article, we propose a novel DG method called continuous disentangled joint space learning (CJSL), which leverages both domain-invariant and domain-specific information for more effective DG. The key idea behind CJSL is to formulate and learn a continuous joint space (CJS) for domain-specific representations from source domains through iterative feature disentanglement. This learned CJS can then be used to simulate domain-specific representations for test samples from a mixture of multiple domains via Monte Carlo sampling during the inference stage. Unlike existing approaches, which exploit domain-invariant feature vectors only or aim to learn a universal domain-specific feature extractor, we simulate domain-specific representations via sampling the latent vectors in the learned CJS for the test sample to fully use the power of multiple domain-specific classifiers for robust prediction. Empirical results demonstrate that CJSL outperforms 19 state-of-the-art (SOTA) methods on seven benchmarks, indicating the effectiveness of our proposed method.

摘要

域泛化(DG)旨在在一个或多个观察到的源域上学习一个模型,该模型能够泛化到未见过的目标测试域。以往的方法主要集中于从多个源域中提取域不变信息,但特定域信息也与各个域中的语义紧密相关,并不适合泛化到目标域。在本文中,我们提出了一种名为连续解缠联合空间学习(CJSL)的新型DG方法,该方法利用域不变信息和特定域信息来实现更有效的DG。CJSL背后的关键思想是通过迭代特征解缠为源域的特定域表示制定并学习一个连续联合空间(CJS)。在推理阶段,可以通过蒙特卡洛采样使用这个学习到的CJS来模拟来自多个域混合的测试样本的特定域表示。与仅利用域不变特征向量或旨在学习通用特定域特征提取器的现有方法不同,我们通过对学习到的CJS中的潜在向量进行采样来模拟测试样本的特定域表示,以充分利用多个特定域分类器的能力进行稳健预测。实证结果表明,CJSL在七个基准测试中优于19种最新(SOTA)方法,这表明了我们所提出方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验