Suppr超能文献

使用无鉴定方法分析植物代谢组学数据。

Analysis of plant metabolomics data using identification-free approaches.

作者信息

Yuan Xinyu, Smith Nathaniel S S, Moghe Gaurav D

机构信息

Plant Biology Section, School of Integrative Plant Science Cornell University Ithaca New York USA.

出版信息

Appl Plant Sci. 2025 Mar 1;13(4):e70001. doi: 10.1002/aps3.70001. eCollection 2025 Jul-Aug.

Abstract

Plant metabolomes are structurally diverse. One of the most popular techniques for sampling this diversity is liquid chromatography-mass spectrometry (LC-MS), which typically detects thousands of peaks from single organ extracts, many representing true metabolites. These peaks are usually annotated using in-house retention time or spectral libraries, in silico fragmentation libraries, and increasingly through computational techniques such as machine learning. Despite these advances, over 85% of LC-MS peaks remain unidentified, posing a major challenge for data analysis and biological interpretation. This bottleneck limits our ability to fully understand the diversity, functions, and evolution of plant metabolites. In this review, we first summarize current approaches for metabolite identification, highlighting their challenges and limitations. We further focus on alternative strategies that bypass the need for metabolite identification, allowing researchers to interpret global metabolic patterns and pinpoint key metabolite signals. These methods include molecular networking, distance-based approaches, information theory-based metrics, and discriminant analysis. Additionally, we explore their practical applications in plant science and highlight a set of useful tools to support researchers in analyzing complex plant metabolomics data. By adopting these approaches, researchers can enhance their ability to uncover new insights into plant metabolism.

摘要

植物代谢组在结构上具有多样性。对这种多样性进行采样的最常用技术之一是液相色谱-质谱联用(LC-MS),该技术通常能从单一器官提取物中检测到数千个峰,其中许多代表真正的代谢物。这些峰通常使用内部保留时间或光谱库、计算机模拟裂解库进行注释,并且越来越多地通过机器学习等计算技术进行注释。尽管取得了这些进展,但超过85%的LC-MS峰仍未得到鉴定,这对数据分析和生物学解释构成了重大挑战。这一瓶颈限制了我们全面了解植物代谢物的多样性、功能和进化的能力。在本综述中,我们首先总结了当前代谢物鉴定的方法,强调了它们面临的挑战和局限性。我们进一步关注那些无需进行代谢物鉴定的替代策略,使研究人员能够解读全局代谢模式并确定关键代谢物信号。这些方法包括分子网络、基于距离的方法、基于信息论的指标和判别分析。此外,我们探讨了它们在植物科学中的实际应用,并重点介绍了一系列有用的工具,以支持研究人员分析复杂的植物代谢组学数据。通过采用这些方法,研究人员能够增强其揭示植物代谢新见解的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cc7/12319716/81b2ddfdebc8/APS3-13-e70001-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验