Lei Haike, Li Xiaosheng, Hu Zuhai, Xu Qianjie, Li Qingdong, Zhou Rong, Yu Qianwen, Xiao Jing
Chongqing Cancer Multi-omics Big Data Application Engineering Research Center, Chongqing University Cancer Hospital, Chongqing, 400030, China.
Department of Health Statistics, School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
J Thromb Thrombolysis. 2025 Jan;58(1):145-156. doi: 10.1007/s11239-024-03041-7. Epub 2024 Sep 21.
Cancer frequently causes venous thromboembolism (VTE), a leading cause of cancer-related mortality. Primary liver cancer (PLC) is prevalent and highly fatal, with an increased risk of venous thrombotic complications. Thus, we aimed to develop a nomogram model for predicting VTE in patients with PLC. We retrospectively analyzed 1,565 patients diagnosed with PLC between January 2018 and December 2022 at Chongqing University Cancer Hospital. Univariate logistic analysis and multivariate logistic regression identified eight significant risk factors: activated partial thromboplastin time (APTT) ≤ 32.20 s, D-dimer > 1.44 mg/L, lymphocyte count (LYM) ≤ 1.18 × 10/L, monocyte count (MONO) > 0.42 × 10/L, transarterial chemoembolization (TACE), surgical intervention, immunotherapy, and β2-microglobulin. The nomogram model exhibited strong discriminatory power, with C indices of 0.753 and 0.710 for the training and validation cohorts, respectively. The calibration curve showed a strong correlation between predicted and actual probabilities. Additionally, decision curve analysis (DCA) and clinical impact curves (CIC) confirmed the model's clinical utility. This nomogram facilitates the identification of high-risk PLC patients, allowing for timely preventive and therapeutic interventions to reduce the risk of thrombosis.
癌症常导致静脉血栓栓塞(VTE),这是癌症相关死亡的主要原因。原发性肝癌(PLC)发病率高且致死率高,静脉血栓形成并发症的风险增加。因此,我们旨在建立一个预测PLC患者VTE的列线图模型。我们回顾性分析了2018年1月至2022年12月在重庆大学附属肿瘤医院诊断为PLC的1565例患者。单因素逻辑分析和多因素逻辑回归确定了八个显著危险因素:活化部分凝血活酶时间(APTT)≤32.20秒、D-二聚体>1.44mg/L、淋巴细胞计数(LYM)≤1.18×10/L、单核细胞计数(MONO)>0.42×10/L、经动脉化疗栓塞(TACE)、手术干预、免疫治疗和β2-微球蛋白。列线图模型具有很强的鉴别能力,训练队列和验证队列的C指数分别为0.753和0.710。校准曲线显示预测概率与实际概率之间有很强的相关性。此外,决策曲线分析(DCA)和临床影响曲线(CIC)证实了该模型的临床实用性。该列线图有助于识别高危PLC患者,以便及时进行预防和治疗干预,降低血栓形成风险。