Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California, United States of America.
Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, United States of America.
PLoS Comput Biol. 2023 Apr 21;19(4):e1011070. doi: 10.1371/journal.pcbi.1011070. eCollection 2023 Apr.
Agent-based models (ABMs) have enabled great advances in the study of tumor development and therapeutic response, allowing researchers to explore the spatiotemporal evolution of the tumor and its microenvironment. However, these models face serious drawbacks in the realm of parameterization - ABM parameters are typically set individually based on various data and literature sources, rather than through a rigorous parameter estimation approach. While ABMs can be fit to simple time-course data (such as tumor volume), that type of data loses the spatial information that is a defining feature of ABMs. While tumor images provide spatial information, it is exceedingly difficult to compare tumor images to ABM simulations beyond a qualitative visual comparison. Without a quantitative method of comparing the similarity of tumor images to ABM simulations, a rigorous parameter fitting is not possible. Here, we present a novel approach that applies neural networks to represent both tumor images and ABM simulations as low dimensional points, with the distance between points acting as a quantitative measure of difference between the two. This enables a quantitative comparison of tumor images and ABM simulations, where the distance between simulated and experimental images can be minimized using standard parameter-fitting algorithms. Here, we describe this method and present two examples to demonstrate the application of the approach to estimate parameters for two distinct ABMs. Overall, we provide a novel method to robustly estimate ABM parameters.
基于代理的模型(ABM)在肿瘤发展和治疗反应的研究中取得了重大进展,使研究人员能够探索肿瘤及其微环境的时空演变。然而,这些模型在参数化方面存在严重的缺陷 - ABM 参数通常是根据各种数据和文献来源单独设置的,而不是通过严格的参数估计方法。虽然 ABM 可以拟合简单的时程数据(如肿瘤体积),但这种类型的数据会丢失 ABM 的定义特征之一 - 空间信息。虽然肿瘤图像提供了空间信息,但很难将肿瘤图像与 ABM 模拟进行比较,除了定性的视觉比较。如果没有一种定量的方法来比较肿瘤图像与 ABM 模拟的相似性,就不可能进行严格的参数拟合。在这里,我们提出了一种新的方法,该方法将神经网络应用于肿瘤图像和 ABM 模拟,将两者表示为低维点,点之间的距离作为两者之间差异的定量度量。这使得可以对肿瘤图像和 ABM 模拟进行定量比较,其中可以使用标准参数拟合算法最小化模拟和实验图像之间的距离。在这里,我们描述了这种方法,并提出了两个示例来说明该方法在估计两个不同 ABM 参数中的应用。总的来说,我们提供了一种稳健估计 ABM 参数的新方法。