Pagano Stefano, Müller Karolina, Götz Julia, Reinhard Jan, Schindler Melanie, Grifka Joachim, Maderbacher Günther
Department of Orthopedic Surgery, University of Regensburg, Asklepios Klinikum Bad Abbach, 93077 Bad Abbach, Germany.
Center for Clinical Studies, University of Regensburg, 93053 Regensburg, Germany.
J Clin Med. 2023 Aug 24;12(17):5498. doi: 10.3390/jcm12175498.
The rapid evolution of artificial intelligence (AI) in medical imaging analysis has significantly impacted musculoskeletal radiology, offering enhanced accuracy and speed in radiograph evaluations. The potential of AI in clinical settings, however, remains underexplored. This research investigates the efficiency of a commercial AI tool in analyzing radiographs of patients who have undergone total knee arthroplasty. The study retrospectively analyzed 200 radiographs from 100 patients, comparing AI software measurements to expert assessments. Assessed parameters included axial alignments (MAD, AMA), femoral and tibial angles (mLPFA, mLDFA, mMPTA, mLDTA), and other key measurements including JLCA, HKA, and Mikulicz line. The tool demonstrated good to excellent agreement with expert metrics (ICC = 0.78-1.00), analyzed radiographs twice as fast ( < 0.001), yet struggled with accuracy for the JLCA (ICC = 0.79, 95% CI = 0.72-0.84), the Mikulicz line (ICC = 0.78, 95% CI = 0.32-0.90), and if patients had a body mass index higher than 30 kg/m ( < 0.001). It also failed to analyze 45 (22.5%) radiographs, potentially due to image overlay or unique patient characteristics. These findings underscore the AI software's potential in musculoskeletal radiology but also highlight the necessity for further development for effective utilization in diverse clinical scenarios. Subsequent studies should explore the integration of AI tools in routine clinical practice and their impact on patient care.
人工智能(AI)在医学影像分析中的快速发展对肌肉骨骼放射学产生了重大影响,在X光片评估中提高了准确性和速度。然而,AI在临床环境中的潜力仍未得到充分探索。本研究调查了一种商业AI工具在分析全膝关节置换术患者X光片方面的效率。该研究回顾性分析了100名患者的200张X光片,将AI软件测量结果与专家评估进行比较。评估参数包括轴向对线(MAD、AMA)、股骨和胫骨角度(mLPFA、mLDFA、mMPTA、mLDTA)以及其他关键测量值,包括JLCA、HKA和米库利奇线。该工具与专家指标显示出良好到极佳的一致性(ICC = 0.78 - 1.00),分析X光片的速度快两倍(< 0.001),但在JLCA(ICC = 0.79,95% CI = 0.72 - 0.84)、米库利奇线(ICC = 0.78,95% CI = 0.32 - 0.90)以及患者体重指数高于30 kg/m²时(< 0.001)的准确性方面存在困难。它还未能分析45张(22.5%)X光片,可能是由于图像重叠或患者的独特特征。这些发现强调了AI软件在肌肉骨骼放射学中的潜力,但也突出了在不同临床场景中有效利用该软件进行进一步开发的必要性。后续研究应探索AI工具在常规临床实践中的整合及其对患者护理的影响。