Suppr超能文献

使用基于深度学习的空间归一化技术在无MRI情况下对多巴胺转运体PET进行准确的自动定量分析。

Accurate Automated Quantification of Dopamine Transporter PET Without MRI Using Deep Learning-based Spatial Normalization.

作者信息

Kang Seung Kwan, Kim Daewoon, Shin Seong A, Kim Yu Kyeong, Choi Hongyoon, Lee Jae Sung

机构信息

Brightonix Imaging Inc., Seongsu-Yeok SK V1 Tower, 25 Yeonmujang 5Ga-Gil, Seongdong-Gu, Seoul, 04782 Korea.

Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea.

出版信息

Nucl Med Mol Imaging. 2024 Oct;58(6):354-363. doi: 10.1007/s13139-024-00869-y. Epub 2024 Jul 22.

Abstract

PURPOSE

Dopamine transporter imaging is crucial for assessing presynaptic dopaminergic neurons in Parkinson's disease (PD) and related parkinsonian disorders. While F-FP-CIT PET offers advantages in spatial resolution and sensitivity over I-β-CIT or I-FP-CIT SPECT imaging, accurate quantification remains essential. This study presents a novel automatic quantification method for F-FP-CIT PET images, utilizing an artificial intelligence (AI)-based robust PET spatial normalization (SN) technology that eliminates the need for anatomical images.

METHODS

The proposed SN engine consists of convolutional neural networks, trained using 213 paired datasets of F-FP-CIT PET and 3D structural MRI. Remarkably, only PET images are required as input during inference. A cyclic training strategy enables backward deformation from template to individual space. An additional 89 paired F-FP-CIT PET and 3D MRI datasets were used to evaluate the accuracy of striatal activity quantification. MRI-based PET quantification using FIRST software was also conducted for comparison. The proposed method was also validated using 135 external datasets.

RESULTS

The proposed AI-based method successfully generated spatially normalized F-FP-CIT PET images, obviating the need for CT or MRI. The striatal PET activity determined by proposed PET-only method and MRI-based PET quantification using FIRST algorithm were highly correlated, with and slope ranging 0.96-0.99 and 0.98-1.02 in both internal and external datasets.

CONCLUSION

Our AI-based SN method enables accurate automatic quantification of striatal activity in F-FP-CIT brain PET images without MRI support. This approach holds promise for evaluating presynaptic dopaminergic function in PD and related parkinsonian disorders.

摘要

目的

多巴胺转运体成像对于评估帕金森病(PD)及相关帕金森综合征中的突触前多巴胺能神经元至关重要。虽然F-FP-CIT PET在空间分辨率和灵敏度方面优于I-β-CIT或I-FP-CIT SPECT成像,但准确量化仍然至关重要。本研究提出了一种用于F-FP-CIT PET图像的新型自动量化方法,该方法利用基于人工智能(AI)的强大PET空间归一化(SN)技术,无需解剖图像。

方法

所提出的SN引擎由卷积神经网络组成,使用213对F-FP-CIT PET和3D结构MRI数据集进行训练。值得注意的是,推理过程中仅需PET图像作为输入。循环训练策略可实现从模板到个体空间的反向变形。另外89对F-FP-CIT PET和3D MRI数据集用于评估纹状体活性量化的准确性。还使用FIRST软件进行基于MRI的PET量化以作比较。所提出的方法也使用135个外部数据集进行了验证。

结果

所提出的基于AI的方法成功生成了空间归一化的F-FP-CIT PET图像,无需CT或MRI。所提出的仅PET方法和使用FIRST算法的基于MRI的PET量化所确定的纹状体PET活性高度相关,在内部和外部数据集中,相关系数和斜率范围分别为0.96 - 0.99和0.98 - 1.02。

结论

我们基于AI的SN方法能够在无MRI支持的情况下准确自动量化F-FP-CIT脑PET图像中的纹状体活性。这种方法有望用于评估PD及相关帕金森综合征中的突触前多巴胺能功能。

相似文献

本文引用的文献

3
Preparing for the Artificial Intelligence Revolution in Nuclear Cardiology.为核心脏病学的人工智能革命做准备。
Nucl Med Mol Imaging. 2023 Apr;57(2):51-60. doi: 10.1007/s13139-021-00733-3. Epub 2022 Feb 28.
6
Automated segmentation of the larynx on computed tomography images: a review.计算机断层扫描图像上喉部的自动分割:综述
Biomed Eng Lett. 2022 Mar 18;12(2):175-183. doi: 10.1007/s13534-022-00221-3. eCollection 2022 May.
7
Photoacoustic imaging aided with deep learning: a review.深度学习辅助的光声成像综述
Biomed Eng Lett. 2021 Nov 23;12(2):155-173. doi: 10.1007/s13534-021-00210-y. eCollection 2022 May.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验