Suppr超能文献

用于大规模脉冲神经网络中基于脉冲时间依赖可塑性的内存高效神经元和突触

Memory-efficient neurons and synapses for spike-timing-dependent-plasticity in large-scale spiking networks.

作者信息

Urbizagastegui Pablo, van Schaik André, Wang Runchun

机构信息

International Centre for Neuromorphic Systems, The MARCS Institute for Brain, Behavior, and Development, Western Sydney University, Kingswood, NSW, Australia.

出版信息

Front Neurosci. 2024 Sep 6;18:1450640. doi: 10.3389/fnins.2024.1450640. eCollection 2024.

Abstract

This paper addresses the challenges posed by frequent memory access during simulations of large-scale spiking neural networks involving synaptic plasticity. We focus on the memory accesses performed during a common synaptic plasticity rule since this can be a significant factor limiting the efficiency of the simulations. We propose neuron models that are represented by only three state variables, which are engineered to enforce the appropriate neuronal dynamics. Additionally, memory retrieval is executed solely by fetching postsynaptic variables, promoting a contiguous memory storage and leveraging the capabilities of burst mode operations to reduce the overhead associated with each access. Different plasticity rules could be implemented despite the adopted simplifications, each leading to a distinct synaptic weight distribution (i.e., unimodal and bimodal). Moreover, our method requires fewer average memory accesses compared to a naive approach. We argue that the strategy described can speed up memory transactions and reduce latencies while maintaining a small memory footprint.

摘要

本文探讨了在涉及突触可塑性的大规模脉冲神经网络模拟过程中频繁内存访问所带来的挑战。我们关注在常见突触可塑性规则执行期间的内存访问,因为这可能是限制模拟效率的一个重要因素。我们提出仅由三个状态变量表示的神经元模型,这些变量经过设计以强制实现适当的神经元动态。此外,内存检索仅通过获取突触后变量来执行,促进连续内存存储并利用突发模式操作的能力来减少每次访问的开销。尽管采用了简化方法,但仍可实现不同的可塑性规则,每种规则都会导致独特的突触权重分布(即单峰和双峰)。此外,与简单方法相比,我们的方法平均内存访问次数更少。我们认为所描述的策略可以加快内存事务处理并减少延迟,同时保持较小的内存占用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e15/11412959/189617d43538/fnins-18-1450640-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验