Suppr超能文献

将扩展卡尔曼滤波器-无迹卡尔曼滤波器(EKF-UKF)与人工神经网络相结合的混合方法是释放可持续能源技术全部潜力并减少环境足迹的关键吗?

Are hybrid approaches combining EKF-UKF and artificial neural networks key to unlocking the full potential of sustainable energy technologies and reducing environmental footprint?

作者信息

Liang WeiFang, Maesoumi Mohsen, Basem Ali, Jasim Dheyaa J, Sultan Abbas J, Al-Rubaye Ameer H, Zhang Jingyu

机构信息

School of Computer Science and Engineering, Hunan University of Information Technology, Changsha, 410151, China.

Department of Electrical and Computer Engineering, Jahrom Branch, Islamic Azad University, Jahrom, Iran.

出版信息

Heliyon. 2024 Sep 4;10(18):e36746. doi: 10.1016/j.heliyon.2024.e36746. eCollection 2024 Sep 30.

Abstract

The integration of traditional state estimation techniques like the Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) with modern artificial neural networks (ANNs) presents a promising avenue for advancing state estimation in sustainable energy systems. This study explores the potential of hybridizing EKF-UKF with ANNs to optimize renewable energy integration and mitigate environmental impact. Through comprehensive experimentation and analysis, significant improvements in state estimation accuracy and sustainability metrics are revealed. The results indicate a substantial 8.02 % reduction in estimation error compared to standalone EKF and UKF methods, highlighting the enhanced predictive capabilities of the hybrid approach. Moreover, the integration of ANNs facilitated a 12.52 % increase in renewable energy utilization efficiency, leading to a notable 5.14 % decrease in carbon emissions. These compelling outcomes underscore the critical role of hybrid approaches in maximizing the efficiency of sustainable energy technologies while simultaneously reducing environmental footprint. By harnessing the synergies between traditional filtering techniques and machine learning algorithms, hybrid EKF-UKF with ANNs emerges as a key enabler in accelerating the transition towards a more sustainable and resilient energy landscape.

摘要

将扩展卡尔曼滤波器(EKF)和无迹卡尔曼滤波器(UKF)等传统状态估计技术与现代人工神经网络(ANN)相结合,为推进可持续能源系统中的状态估计提供了一条很有前景的途径。本研究探讨了将EKF-UKF与ANN进行混合以优化可再生能源整合并减轻环境影响的潜力。通过全面的实验和分析,揭示了状态估计精度和可持续性指标的显著提高。结果表明,与独立的EKF和UKF方法相比,估计误差大幅降低了8.02%,突出了混合方法增强的预测能力。此外,ANN的整合使可再生能源利用效率提高了12.52%,导致碳排放显著减少了5.14%。这些令人信服的结果强调了混合方法在最大限度提高可持续能源技术效率同时减少环境足迹方面的关键作用。通过利用传统滤波技术和机器学习算法之间的协同作用,带有ANN的混合EKF-UKF成为加速向更可持续、更具弹性的能源格局过渡的关键推动因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09e0/11415650/a1ac6518d868/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验