Chou Cheng-Li, Lin Chieh-Te, Kao Chien-Ting, Lin Chu-Chung
AnHorn Medicines Co., Ltd., Taipei 115202, Taiwan.
Department of Biomedical Engineering, University of California Davis, Davis, California 95616, United States.
ACS Omega. 2024 Sep 6;9(37):38371-38384. doi: 10.1021/acsomega.3c10183. eCollection 2024 Sep 17.
The rational design of novel drug candidates presents a formidable challenge in modern drug discovery. Proteolysis-targeting chimeras (PROTACs) drug design is particularly demanding due to their limited crystal structure availability and design of a viable small molecule to bridge the protein of interest (POI) and ubiquitin-protein ligase (E3). An integrated approach that combines superimposition techniques and deep neural networks is demonstrated in this study to leverage the power of deep learning and structural biology to generate structurally diverse molecules with enhanced binding affinities. The superimposition technique ensures the congruence of initial and new protein-ligand pairs, which are evaluated via subsequent comprehensive screening using the root-mean-square deviation (RMSD), binding free energy (BFE), and buried solvent-accessible surface area (SASA). The final candidates are subjected to the incorporation of molecular dynamics (MD) and free energy perturbation (FEP) simulations to provide a quantitative evaluation of relative binding energies, reinforcing the efficacy and reliability of the generated molecules. The outcomes of the generated novel PROTACs molecules exhibit comparable structural attributes while demonstrating superior binding affinities within the binding pockets when contrasted with those of the established cocrystal ternary complexes. To enhance the generalizability of the workflow, we chose the ternary structure of the cellular inhibitor of apoptosis protein 1 (cIAP1) and Bruton's Tyrosine Kinase (BTK) for validating the chemical properties generated from the processes. The new linker molecules additionally showed superior affinity from the simulations. In summary, this methodology serves as an effective workflow to align computational predictions with current limitations, thereby introducing a novel paradigm in AI-driven drug design.
新型候选药物的合理设计是现代药物研发中一项艰巨的挑战。靶向蛋白水解嵌合体(PROTACs)药物设计尤其具有挑战性,因为其晶体结构可用性有限,且需要设计一个可行的小分子来连接目标蛋白(POI)和泛素蛋白连接酶(E3)。本研究展示了一种结合叠加技术和深度神经网络的综合方法,以利用深度学习和结构生物学的力量来生成具有增强结合亲和力的结构多样的分子。叠加技术确保了初始和新的蛋白质 - 配体对的一致性,通过随后使用均方根偏差(RMSD)、结合自由能(BFE)和埋藏溶剂可及表面积(SASA)进行的全面筛选来评估这些对。最终候选物要进行分子动力学(MD)和自由能扰动(FEP)模拟,以提供相对结合能的定量评估,增强所生成分子的功效和可靠性。与已建立的共晶体三元复合物相比,所生成的新型PROTACs分子的结果显示出可比的结构属性,同时在结合口袋内表现出卓越的结合亲和力。为了提高工作流程的通用性,我们选择了细胞凋亡抑制蛋白1(cIAP1)和布鲁顿酪氨酸激酶(BTK)的三元结构来验证从这些过程中产生的化学性质。新的连接分子在模拟中也显示出卓越的亲和力。总之,这种方法作为一种有效的工作流程,使计算预测与当前的局限性相匹配,从而在人工智能驱动的药物设计中引入了一种新的范例。