Suppr超能文献

基于多模态变压器神经网络的深度骨架跳跃

Deep scaffold hopping with multimodal transformer neural networks.

作者信息

Zheng Shuangjia, Lei Zengrong, Ai Haitao, Chen Hongming, Deng Daiguo, Yang Yuedong

机构信息

School of Data and Computer Science, Sun Yat-Sen University, China, 132 East Circle at University City, Guangzhou, 510006, China.

Fermion Technology Co., Ltd, 1088 Newport East Road, Guangzhou, 510335, China.

出版信息

J Cheminform. 2021 Nov 13;13(1):87. doi: 10.1186/s13321-021-00565-5.

Abstract

Scaffold hopping is a central task of modern medicinal chemistry for rational drug design, which aims to design molecules of novel scaffolds sharing similar target biological activities toward known hit molecules. Traditionally, scaffolding hopping depends on searching databases of available compounds that can't exploit vast chemical space. In this study, we have re-formulated this task as a supervised molecule-to-molecule translation to generate hopped molecules novel in 2D structure but similar in 3D structure, as inspired by the fact that candidate compounds bind with their targets through 3D conformations. To efficiently train the model, we curated over 50 thousand pairs of molecules with increased bioactivity, similar 3D structure, but different 2D structure from public bioactivity database, which spanned 40 kinases commonly investigated by medicinal chemists. Moreover, we have designed a multimodal molecular transformer architecture by integrating molecular 3D conformer through a spatial graph neural network and protein sequence information through Transformer. The trained DeepHop model was shown able to generate around 70% molecules having improved bioactivity together with high 3D similarity but low 2D scaffold similarity to the template molecules. This ratio was 1.9 times higher than other state-of-the-art deep learning methods and rule- and virtual screening-based methods. Furthermore, we demonstrated that the model could generalize to new target proteins through fine-tuning with a small set of active compounds. Case studies have also shown the advantages and usefulness of DeepHop in practical scaffold hopping scenarios.

摘要

骨架跃迁是现代药物化学中合理药物设计的核心任务,其目的是设计出与已知活性分子具有相似目标生物活性的新型骨架分子。传统上,骨架跃迁依赖于搜索现有化合物数据库,而这些数据库无法充分利用广阔的化学空间。在本研究中,受候选化合物通过三维构象与靶点结合这一事实的启发,我们将此任务重新定义为一种有监督的分子到分子的翻译,以生成二维结构新颖但三维结构相似的跃迁分子。为了有效地训练模型,我们从公共生物活性数据库中精心挑选了超过五万对分子,这些分子具有增强的生物活性、相似的三维结构,但二维结构不同,涵盖了药物化学家通常研究的40种激酶。此外,我们通过一个空间图神经网络整合分子三维构象,并通过Transformer整合蛋白质序列信息,设计了一种多模态分子Transformer架构。结果表明,经过训练的DeepHop模型能够生成约70%的分子,这些分子与模板分子相比,生物活性有所提高,三维相似度高,但二维骨架相似度低。这个比例比其他基于深度学习的先进方法以及基于规则和虚拟筛选的方法高出1.9倍。此外,我们证明了该模型可以通过用一小部分活性化合物进行微调来推广到新的目标蛋白。案例研究也展示了DeepHop在实际骨架跃迁场景中的优势和实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dce1/8590293/11ba3553bd53/13321_2021_565_Fig1_HTML.jpg

相似文献

1
Deep scaffold hopping with multimodal transformer neural networks.
J Cheminform. 2021 Nov 13;13(1):87. doi: 10.1186/s13321-021-00565-5.
3
A Scaffold-based Deep Generative Model Considering Molecular Stereochemical Information.
Mol Inform. 2022 Dec;41(12):e2200088. doi: 10.1002/minf.202200088. Epub 2022 Oct 6.
5
DrugEx v3: scaffold-constrained drug design with graph transformer-based reinforcement learning.
J Cheminform. 2023 Feb 20;15(1):24. doi: 10.1186/s13321-023-00694-z.
7
Virtual screening and scaffold hopping based on GRID molecular interaction fields.
J Chem Inf Model. 2005 Sep-Oct;45(5):1313-23. doi: 10.1021/ci049626p.
9
FSM-DDTR: End-to-end feedback strategy for multi-objective De Novo drug design using transformers.
Comput Biol Med. 2023 Sep;164:107285. doi: 10.1016/j.compbiomed.2023.107285. Epub 2023 Jul 31.
10
Improved Scaffold Hopping in Ligand-Based Virtual Screening Using Neural Representation Learning.
J Chem Inf Model. 2020 Oct 26;60(10):4629-4639. doi: 10.1021/acs.jcim.0c00622. Epub 2020 Aug 19.

引用本文的文献

3
Scaffold Hopping with Generative Reinforcement Learning.
J Chem Inf Model. 2025 Jul 14;65(13):6513-6525. doi: 10.1021/acs.jcim.5c00029. Epub 2025 Jun 26.
5
A systematic review of deep learning chemical language models in recent era.
J Cheminform. 2024 Nov 18;16(1):129. doi: 10.1186/s13321-024-00916-y.
6
A Novel Rational PROTACs Design and Validation via AI-Driven Drug Design Approach.
ACS Omega. 2024 Sep 6;9(37):38371-38384. doi: 10.1021/acsomega.3c10183. eCollection 2024 Sep 17.
7
Evaluation of reinforcement learning in transformer-based molecular design.
J Cheminform. 2024 Aug 8;16(1):95. doi: 10.1186/s13321-024-00887-0.
8
Application of Transformers in Cheminformatics.
J Chem Inf Model. 2024 Jun 10;64(11):4392-4409. doi: 10.1021/acs.jcim.3c02070. Epub 2024 May 30.
9
Deep learning in structural bioinformatics: current applications and future perspectives.
Brief Bioinform. 2024 Mar 27;25(3). doi: 10.1093/bib/bbae042.

本文引用的文献

1
SyntaLinker: automatic fragment linking with deep conditional transformer neural networks.
Chem Sci. 2020 Jul 22;11(31):8312-8322. doi: 10.1039/d0sc03126g.
2
Scaffold-based molecular design with a graph generative model.
Chem Sci. 2019 Dec 3;11(4):1153-1164. doi: 10.1039/c9sc04503a.
4
SMILES-based deep generative scaffold decorator for de-novo drug design.
J Cheminform. 2020 May 29;12(1):38. doi: 10.1186/s13321-020-00441-8.
5
Evaluating Protein Transfer Learning with TAPE.
Adv Neural Inf Process Syst. 2019 Dec;32:9689-9701.
7
Improved Scaffold Hopping in Ligand-Based Virtual Screening Using Neural Representation Learning.
J Chem Inf Model. 2020 Oct 26;60(10):4629-4639. doi: 10.1021/acs.jcim.0c00622. Epub 2020 Aug 19.
8
Exploring Topological Pharmacophore Graphs for Scaffold Hopping.
J Chem Inf Model. 2020 Apr 27;60(4):2073-2081. doi: 10.1021/acs.jcim.0c00098. Epub 2020 Mar 30.
9
Deep Generative Models for 3D Linker Design.
J Chem Inf Model. 2020 Apr 27;60(4):1983-1995. doi: 10.1021/acs.jcim.9b01120. Epub 2020 Apr 2.
10
Predicting Retrosynthetic Reactions Using Self-Corrected Transformer Neural Networks.
J Chem Inf Model. 2020 Jan 27;60(1):47-55. doi: 10.1021/acs.jcim.9b00949. Epub 2019 Dec 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验