Hörmann Martin, Camargo Franco V A, van Hulst Niek F, Cerullo Giulio, Liebel Matz
Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, Milano 20133, Italy.
Istituto di Fotonica e Nanotecnologie-CNR, Piazza L. da Vinci 32, Milano 20133, Italy.
ACS Photonics. 2024 Aug 27;11(9):3680-3687. doi: 10.1021/acsphotonics.4c00797. eCollection 2024 Sep 18.
Optical diffraction tomography (ODT) is a powerful noninvasive 3D imaging technique, but its combination with broadband light sources is difficult. In this study, we introduce ultrabroadband ODT, covering over 150 nm of visible spectral bandwidth with a lateral spatial resolution of 150 nm. Our work addresses a critical experimental gap by enabling the measurement of broadband refractive index changes in 3D samples, crucial information that is difficult to assess with existing methodologies. We present broadband, spectrally resolved ODT images of HeLa cells, obtained via pulse-shaping-based Fourier transform spectroscopy. The spectral observations enabled by ultrabroadband ODT, combined with material-dependent refractive index responses, allow for precise three-dimensional identification of nanoparticles within cellular structures. Our work represents a crucial step toward time and spectrally resolved tomography of complex 3D structures with implications for life and materials science applications.
光学衍射层析成像(ODT)是一种强大的非侵入性三维成像技术,但将其与宽带光源相结合却很困难。在本研究中,我们引入了超宽带ODT,其可见光谱带宽超过150纳米,横向空间分辨率为150纳米。我们的工作通过实现对三维样品中宽带折射率变化的测量,填补了一个关键的实验空白,而现有方法很难评估这些关键信息。我们展示了通过基于脉冲整形的傅里叶变换光谱法获得的HeLa细胞的宽带、光谱分辨ODT图像。超宽带ODT实现的光谱观测,结合与材料相关的折射率响应,能够在细胞结构内精确三维识别纳米颗粒。我们的工作代表了朝着对复杂三维结构进行时间和光谱分辨层析成像迈出的关键一步,对生命科学和材料科学应用具有重要意义。