Suppr超能文献

增强骨扫描图像质量:一种改进的自监督去噪方法。

Enhancing bone scan image quality: an improved self-supervised denoising approach.

机构信息

Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea.

Integrated Major in Innovative Medical Science, Seoul National University, Seoul, Republic of Korea.

出版信息

Phys Med Biol. 2024 Oct 21;69(21). doi: 10.1088/1361-6560/ad7e79.

Abstract

Bone scans play an important role in skeletal lesion assessment, but gamma cameras exhibit challenges with low sensitivity and high noise levels. Deep learning (DL) has emerged as a promising solution to enhance image quality without increasing radiation exposure or scan time. However, existing self-supervised denoising methods, such as Noise2Noise (N2N), may introduce deviations from the clinical standard in bone scans. This study proposes an improved self-supervised denoising technique to minimize discrepancies between DL-based denoising and full scan images.Retrospective analysis of 351 whole-body bone scan data sets was conducted. In this study, we used N2N and Noise2FullCount (N2F) denoising models, along with an interpolated version of N2N (iN2N). Denoising networks were separately trained for each reduced scan time from 5 to 50%, and also trained for mixed training datasets, which include all shortened scans. We performed quantitative analysis and clinical evaluation by nuclear medicine experts.The denoising networks effectively generated images resembling full scans, with N2F revealing distinctive patterns for different scan times, N2N producing smooth textures with slight blurring, and iN2N closely mirroring full scan patterns. Quantitative analysis showed that denoising improved with longer input times and mixed count training outperformed fixed count training. Traditional denoising methods lagged behind DL-based denoising. N2N demonstrated limitations in long-scan images. Clinical evaluation favored N2N and iN2N in resolution, noise, blurriness, and findings, showcasing their potential for enhanced diagnostic performance in quarter-time scans.The improved self-supervised denoising technique presented in this study offers a viable solution to enhance bone scan image quality, minimizing deviations from clinical standards. The method's effectiveness was demonstrated quantitatively and clinically, showing promise for quarter-time scans without compromising diagnostic performance. This approach holds potential for improving bone scan interpretations, aiding in more accurate clinical diagnoses.

摘要

骨扫描在评估骨骼病变方面发挥着重要作用,但伽马相机存在灵敏度低和噪声水平高的挑战。深度学习 (DL) 已成为一种有前途的解决方案,可以在不增加辐射暴露或扫描时间的情况下提高图像质量。然而,现有的自监督去噪方法,如 Noise2Noise (N2N),可能会在骨扫描中引入与临床标准的偏差。本研究提出了一种改进的自监督去噪技术,以最小化基于 DL 的去噪与全扫描图像之间的差异。

对 351 例全身骨扫描数据集进行了回顾性分析。在这项研究中,我们使用了 N2N 和 Noise2FullCount (N2F) 去噪模型,以及 N2N 的插值版本 (iN2N)。去噪网络分别针对从 5%到 50%的每个减少的扫描时间进行训练,并且还针对包括所有缩短扫描的混合训练数据集进行训练。我们由核医学专家进行了定量分析和临床评估。

去噪网络有效地生成了类似于全扫描的图像,N2F 为不同的扫描时间呈现出独特的模式,N2N 产生平滑的纹理略有模糊,iN2N 则紧密地反映了全扫描的模式。定量分析表明,随着输入时间的延长,去噪效果会提高,混合计数训练优于固定计数训练。传统的去噪方法落后于基于 DL 的去噪。N2N 在长扫描图像中表现出局限性。临床评估倾向于在分辨率、噪声、模糊和发现方面使用 N2N 和 iN2N,展示了它们在四分之一时间扫描中提高诊断性能的潜力。

本研究提出的改进的自监督去噪技术为提高骨扫描图像质量提供了一种可行的解决方案,最大限度地减少了与临床标准的偏差。该方法在定量和临床方面都表现出了有效性,在不影响诊断性能的情况下,有望在四分之一时间扫描中得到应用。该方法有可能改善骨扫描解读,有助于更准确的临床诊断。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验