Huang Yu, Leotta Nicholas J, Hirsch Lukas, Gullo Roberto Lo, Hughes Mary, Reiner Jeffrey, Saphier Nicole B, Myers Kelly S, Panigrahi Babita, Ambinder Emily, Di Carlo Philip, Grimm Lars J, Lowell Dorothy, Yoon Sora, Ghate Sujata V, Parra Lucas C, Sutton Elizabeth J
Department of Biomedical Engineering, The City College of the City University of New York, 160 Convent Ave, New York, NY, 10031, USA.
Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
J Imaging Inform Med. 2025 Jun;38(3):1642-1652. doi: 10.1007/s10278-024-01266-9. Epub 2024 Sep 25.
This work aims to perform a cross-site validation of automated segmentation for breast cancers in MRI and to compare the performance to radiologists. A three-dimensional (3D) U-Net was trained to segment cancers in dynamic contrast-enhanced axial MRIs using a large dataset from Site 1 (n = 15,266; 449 malignant and 14,817 benign). Performance was validated on site-specific test data from this and two additional sites, and common publicly available testing data. Four radiologists from each of the three clinical sites provided two-dimensional (2D) segmentations as ground truth. Segmentation performance did not differ between the network and radiologists on the test data from Sites 1 and 2 or the common public data (median Dice score Site 1, network 0.86 vs. radiologist 0.85, n = 114; Site 2, 0.91 vs. 0.91, n = 50; common: 0.93 vs. 0.90). For Site 3, an affine input layer was fine-tuned using segmentation labels, resulting in comparable performance between the network and radiologist (0.88 vs. 0.89, n = 42). Radiologist performance differed on the common test data, and the network numerically outperformed 11 of the 12 radiologists (median Dice: 0.85-0.94, n = 20). In conclusion, a deep network with a novel supervised harmonization technique matches radiologists' performance in MRI tumor segmentation across clinical sites. We make code and weights publicly available to promote reproducible AI in radiology.
这项工作旨在对MRI中乳腺癌自动分割进行跨站点验证,并将其性能与放射科医生的性能进行比较。使用来自站点1的大型数据集(n = 15266;449例恶性和14817例良性)训练了一个三维(3D)U-Net,以在动态对比增强轴向MRI中分割癌症。在来自该站点和另外两个站点的特定站点测试数据以及常见的公开可用测试数据上对性能进行了验证。来自三个临床站点的四名放射科医生提供二维(2D)分割作为金标准。在来自站点1和2的测试数据或公共数据上,网络和放射科医生之间的分割性能没有差异(站点1的中位数Dice分数,网络为0.86,放射科医生为0.85,n = 114;站点2,0.91对0.91,n = 50;公共数据:0.93对0.90)。对于站点3,使用分割标签对仿射输入层进行了微调,从而使网络和放射科医生之间的性能具有可比性(0.88对0.89,n = 42)。放射科医生在公共测试数据上的表现有所不同,并且网络在数值上优于12名放射科医生中的11名(中位数Dice:0.85 - 0.94,n = 20)。总之,具有新型监督协调技术的深度网络在跨临床站点的MRI肿瘤分割中与放射科医生的性能相匹配。我们公开提供代码和权重,以促进放射学中可重复人工智能的发展。