Suppr超能文献

整合机器学习与多组学分析以开发一种天冬酰胺代谢免疫指数,用于改善肺腺癌的临床结局和药物敏感性。

Integrating machine learning and multi-omics analysis to develop an asparagine metabolism immunity index for improving clinical outcome and drug sensitivity in lung adenocarcinoma.

作者信息

Li Chunhong, Mao Yuhua, Hu Jiahua, Su Chunchun, Li Mengqin, Tan Haiyin

机构信息

Central Laboratory, The Second Affiliated Hospital of Guilin Medical University, Guilin , 541199, Guangxi, China.

Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, Guangxi, China.

出版信息

Immunol Res. 2024 Dec;72(6):1447-1469. doi: 10.1007/s12026-024-09544-y. Epub 2024 Sep 25.

Abstract

Lung adenocarcinoma (LUAD) is a malignancy affecting the respiratory system. Most patients are diagnosed with advanced or metastatic lung cancer due to the fact that most of their clinical symptoms are insidious, resulting in a bleak prognosis. Given that abnormal reprogramming of asparagine metabolism (AM) has emerged as an emerging therapeutic target for anti-tumor therapy. However, the clinical significance of abnormal reprogramming of AM in LUAD patients is unclear. In this study, we collected 864 asparagine metabolism-related genes (AMGs) and used a machine-learning computational framework to develop an asparagine metabolism immunity index (AMII) for LUAD patients. Through the utilization of median AMII scores, LUAD patients were segregated into either a low-AMII group or a high-AMII group. We observed outstanding performance of AMII in predicting survival prognosis in LUAD patients in the TCGA-LUAD cohort and in three externally independently validated GEO cohorts (GSE72094, GSE37745, and GSE30219), and poorer prognosis for LUAD patients in the high-AMII group. The results of univariate and multivariate analyses showed that AMII can be used as an independent risk factor for LUAD patients. In addition, the results of C-index analysis and decision analysis showed that AMII-based nomograms had a robust performance in terms of accuracy of prognostic prediction and net clinical benefit in patients with LUAD. Excitingly, LUAD patients in the low-AMII group were more sensitive to commonly used chemotherapeutic drugs. Consequently, AMII is expected to be a novel diagnostic tool for clinical classification, providing valuable insights for clinical decision-making and personalized management of LUAD patients.

摘要

肺腺癌(LUAD)是一种影响呼吸系统的恶性肿瘤。大多数患者被诊断为晚期或转移性肺癌,因为他们的大多数临床症状隐匿,导致预后不佳。鉴于天冬酰胺代谢(AM)的异常重编程已成为抗肿瘤治疗的新兴靶点。然而,LUAD患者中AM异常重编程的临床意义尚不清楚。在本研究中,我们收集了864个天冬酰胺代谢相关基因(AMGs),并使用机器学习计算框架为LUAD患者开发了一个天冬酰胺代谢免疫指数(AMII)。通过利用AMII评分中位数,将LUAD患者分为低AMII组或高AMII组。我们观察到AMII在预测TCGA-LUAD队列以及三个外部独立验证的GEO队列(GSE72094、GSE37745和GSE30219)中LUAD患者的生存预后方面表现出色,且高AMII组的LUAD患者预后较差。单因素和多因素分析结果表明,AMII可作为LUAD患者的独立危险因素。此外,C指数分析和决策分析结果表明,基于AMII的列线图在LUAD患者的预后预测准确性和净临床获益方面具有强大性能。令人兴奋的是,低AMII组的LUAD患者对常用化疗药物更敏感。因此,AMII有望成为临床分类的新型诊断工具,为LUAD患者的临床决策和个性化管理提供有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验