Tang Shidi, Ding Ji, Zhu Xiangyu, Wang Zheng, Zhao Haitao, Wu Jiansheng
IEEE/ACM Trans Comput Biol Bioinform. 2024 Nov-Dec;21(6):2382-2393. doi: 10.1109/TCBB.2024.3467127. Epub 2024 Dec 10.
AutoDock Vina and its derivatives have established themselves as a prevailing pipeline for virtual screening in contemporary drug discovery. Our Vina-GPU method leverages the parallel computing power of GPUs to accelerate AutoDock Vina, and Vina-GPU 2.0 further enhances the speed of AutoDock Vina and its derivatives. Given the prevalence of large virtual screens in modern drug discovery, the improvement of speed and accuracy in virtual screening has become a longstanding challenge. In this study, we propose Vina-GPU 2.1, aimed at enhancing the docking speed and precision of AutoDock Vina and its derivatives through the integration of novel algorithms to facilitate improved docking and virtual screening outcomes. Building upon the foundations laid by Vina-GPU 2.0, we introduce a novel algorithm, namely Reduced Iteration and Low Complexity BFGS (RILC-BFGS), designed to expedite the most time-consuming operation. Additionally, we implement grid cache optimization to further enhance the docking speed. Furthermore, we employ optimal strategies to individually optimize the structures of ligands, receptors, and binding pockets, thereby enhancing the docking precision. To assess the performance of Vina-GPU 2.1, we conduct extensive virtual screening experiments on three prominent targets, utilizing two fundamental compound libraries and seven docking tools. Our results demonstrate that Vina-GPU 2.1 achieves an average 4.97-fold acceleration in docking speed and an average 342% improvement in EF1% compared to Vina-GPU 2.0.
AutoDock Vina及其衍生工具已成为当代药物发现中虚拟筛选的主流方法。我们的Vina-GPU方法利用GPU的并行计算能力来加速AutoDock Vina,而Vina-GPU 2.0进一步提高了AutoDock Vina及其衍生工具的速度。鉴于现代药物发现中大型虚拟筛选的普遍存在,提高虚拟筛选的速度和准确性一直是一项长期挑战。在本研究中,我们提出了Vina-GPU 2.1,旨在通过整合新算法来提高AutoDock Vina及其衍生工具的对接速度和精度,以促进更好的对接和虚拟筛选结果。在Vina-GPU 2.0奠定的基础上,我们引入了一种新算法,即简化迭代和低复杂度BFGS(RILC-BFGS),旨在加快最耗时的操作。此外,我们实施了网格缓存优化以进一步提高对接速度。此外,我们采用优化策略分别优化配体、受体和结合口袋的结构,从而提高对接精度。为了评估Vina-GPU 2.1的性能,我们利用两个基本化合物库和七种对接工具对三个重要靶点进行了广泛的虚拟筛选实验。我们的结果表明,与Vina-GPU 2.0相比,Vina-GPU 2.1的对接速度平均提高了4.97倍,EF1%平均提高了342%。