Suppr超能文献

系统鉴定染色体间相互作用网络支持专门 RNA 工厂的存在。

Systematic identification of interchromosomal interaction networks supports the existence of specialized RNA factories.

机构信息

Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA.

Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA.

出版信息

Genome Res. 2024 Oct 29;34(10):1610-1623. doi: 10.1101/gr.278327.123.

Abstract

Most studies of genome organization have focused on intrachromosomal () contacts because they harbor key features such as DNA loops and topologically associating domains. Interchromosomal () contacts have received much less attention, and tools for interrogating potential biologically relevant structures are lacking. Here, we develop a computational framework that uses Hi-C data to identify sets of loci that jointly interact in This method, trans-C, initiates probabilistic random walks with restarts from a set of seed loci to traverse an input Hi-C contact network, thereby identifying sets of -contacting loci. We validate trans-C in three increasingly complex models of established contacts: the genes, the mouse olfactory receptor "Greek islands," and the human RBM20 cardiac splicing factory. We then apply trans-C to systematically test the hypothesis that genes coregulated by the same -acting element (i.e., a transcription or splicing factor) colocalize in three dimensions to form "RNA factories" that maximize the efficiency and accuracy of RNA biogenesis. We find that many loci with multiple binding sites of the same DNA-binding proteins interact with one another in , especially those bound by factors with intrinsically disordered domains. Similarly, clustered binding of a subset of RNA-binding proteins correlates with interaction of the encoding loci. We observe that these -interacting loci are close to nuclear speckles. These findings support the existence of interacting chromatin domains (TIDs) driven by RNA biogenesis. Trans-C provides an efficient computational framework for studying these and other types of interactions, empowering studies of a poorly understood aspect of genome architecture.

摘要

大多数基因组组织的研究都集中在染色体内(intrachromosomal)相互作用上,因为它们包含 DNA 环和拓扑关联域等关键特征。染色体间(interchromosomal)相互作用受到的关注要少得多,而且缺乏用于探究潜在生物学相关结构的工具。在这里,我们开发了一种计算框架,该框架使用 Hi-C 数据来识别共同相互作用的基因座集合。这种方法,即跨染色体(trans-C),从一组种子基因座开始,使用带有重启的概率随机游走,遍历输入的 Hi-C 接触网络,从而识别出一组相互作用的基因座。我们在三个越来越复杂的已建立的染色体间相互作用模型中验证了 trans-C:转录因子结合的基因座、小鼠嗅觉受体“希腊岛屿”和人类 RBM20 心脏剪接工厂。然后,我们应用 trans-C 系统地检验了一个假设,即受相同转录或剪接因子作用元件(即转录因子或剪接因子)共同调控的基因在三维空间中聚集在一起,形成“RNA 工厂”,从而最大限度地提高 RNA 生物发生的效率和准确性。我们发现,许多具有相同 DNA 结合蛋白多个结合位点的基因座在染色体间相互作用,尤其是那些由具有固有无序结构域的因子结合的基因座。同样,RNA 结合蛋白的亚群的聚类结合与编码基因座的相互作用相关。我们观察到这些在染色体间相互作用的基因座靠近核斑点。这些发现支持了由 RNA 生物发生驱动的染色体间相互作用染色质域(TIDs)的存在。Trans-C 为研究这些和其他类型的染色体间相互作用提供了一种有效的计算框架,为研究基因组结构中一个理解甚少的方面提供了支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/68dc/11529845/213f95e8da33/1610f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验