Suppr超能文献

开发并内部验证机器学习模型,以预测胸椎管狭窄症手术治疗后术后功能状态恶化。

Development and Internal Validation of Machine Learning to Predict Postoperative Worse Functional Status after Surgical Treatment for Thoracic Spinal Stenosis.

机构信息

Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.

Department of Anesthesiology, Xi'an Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.

出版信息

Med Sci Monit. 2024 Sep 26;30:e945310. doi: 10.12659/MSM.945310.

Abstract

BACKGROUND The objective of this study was to develop and validate machine learning (ML) algorithms to predict the 30-day and 6-month risk of deteriorating functional status following surgical treatment for thoracic spinal stenosis (TSS). We aimed to provide surgeons with tools to identify patients with TSS who have a higher risk of postoperative functional decline. MATERIAL AND METHODS The records of 327 patients with TSS who completed both follow-up visits were analyzed. Our primary endpoint was the dichotomized change in the perioperative Japanese Orthopedic Association (JOA) score, categorized based on whether it deteriorated or not. The models were developed using Naïve Bays, LightGBM, XGBoost, logistic regression, and random forest classification models. The model performance was assessed by accuracy and the c-statistic. ML algorithms were trained, optimized, and tested. RESULTS The best-performing algorithms for predicting functional decline at 30 days and 6 months after TSS surgery were XGBoost (accuracy=88.17%, c-statistic=0.83) and Naïve Bays (accuracy=86.03%, c-statistic=0.80). Both algorithms presented good calibration and discrimination in our testing data. We identified several significant predictors, including poor quality of intraoperative SSEP/MEP baseline, poor quality of preoperative SSEP, duration of symptoms, operated level, and motor dysfunction of the lower extremity. CONCLUSIONS The best-performing algorithms for predicting functional decline at 30 days and 6 months after TSS surgery were XGBoost (accuracy=88.17%, c-statistic=0.83) and Naïve Bays (accuracy=86.03%, c-statistic=0.80). Both algorithms presented good calibration and discrimination in our testing data. We identified several significant predictors, including poor quality of intraoperative SSEP/MEP baseline, poor quality of preoperative SSEP, duration of symptoms, operated level, and motor dysfunction of the lower extremity.

摘要

背景

本研究旨在开发和验证机器学习(ML)算法,以预测胸椎管狭窄症(TSS)患者手术后 30 天和 6 个月功能状态恶化的风险。我们的目标是为外科医生提供工具,以识别 TSS 患者术后功能下降风险较高的患者。

材料与方法

分析了 327 例完成两次随访的 TSS 患者的记录。我们的主要终点是根据术后日本矫形协会(JOA)评分是否恶化而分为二分类的变化。模型采用朴素贝叶斯、LightGBM、XGBoost、逻辑回归和随机森林分类模型进行开发。通过准确性和 c 统计量评估模型性能。对 ML 算法进行了训练、优化和测试。

结果

预测 TSS 手术后 30 天和 6 个月功能下降的最佳算法是 XGBoost(准确性=88.17%,c 统计量=0.83)和朴素贝叶斯(准确性=86.03%,c 统计量=0.80)。这两种算法在我们的测试数据中均表现出良好的校准和区分能力。我们确定了几个重要的预测指标,包括术中 SSEP/MEP 基线质量差、术前 SSEP 质量差、症状持续时间、手术水平和下肢运动功能障碍。

结论

预测 TSS 手术后 30 天和 6 个月功能下降的最佳算法是 XGBoost(准确性=88.17%,c 统计量=0.83)和朴素贝叶斯(准确性=86.03%,c 统计量=0.80)。这两种算法在我们的测试数据中均表现出良好的校准和区分能力。我们确定了几个重要的预测指标,包括术中 SSEP/MEP 基线质量差、术前 SSEP 质量差、症状持续时间、手术水平和下肢运动功能障碍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbd0/11443983/6e7caf7594e7/medscimonit-30-e945310-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验