Department of Radiology and Center for Imaging Sciences, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
Department of Radiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
Acta Neurochir (Wien). 2024 Sep 26;166(1):381. doi: 10.1007/s00701-024-06267-9.
Detection and localization of cerebral microbleeds (CMBs) is crucial for disease diagnosis and treatment planning. However, CMB detection is labor-intensive, time-consuming, and challenging owing to its visual similarity to mimics. This study aimed to validate the performance of a three-dimensional (3D) deep learning model that not only detects CMBs but also identifies their anatomic location in real-world settings.
A total of 21 patients with 116 CMBs and 12 without CMBs were visited in the neurosurgery outpatient department between January 2023 and October 2023. Three readers, including a board-certified neuroradiologist (reader 1), a resident in radiology (reader 2), and a neurosurgeon (reader 3) independently reviewed SWIs of 33 patients to detect CMBs and categorized their locations into lobar, deep, and infratentorial regions without any AI assistance. After a one-month washout period, the same datasets were redistributed randomly, and readers reviewed them again with the assistance of the 3D deep learning model. A comparison of the diagnostic performance between readers with and without AI assistance was performed.
All readers with an AI assistant (reader 1:0.991 [0.930-0.999], reader 2:0.922 [0.881-0.905], and reader 3:0.966 [0.928-0.984]) tended to have higher sensitivity per lesion than readers only (reader 1:0.905 [0.849-0.942], reader 2:0.621 [0.541-0.694], and reader 3:0.871 [0.759-0.935], p = 0.132, 0.017, and 0.227, respectively). In particular, radiology residents (reader 2) showed a statistically significant increase in sensitivity per lesion when using AI. There was no statistically significant difference in the number of FPs per patient for all readers with AI assistant (reader 1: 0.394 [0.152-1.021], reader 2: 0.727 [0.334-1.582], reader 3: 0.182 [0.077-0.429]) and reader only (reader 1: 0.364 [0.159-0.831], reader 2: 0.576 [0.240-1.382], reader 3: 0.121 [0.038-0.383], p = 0.853, 0.251, and 0.157, respectively). Our model accurately categorized the anatomical location of all CMBs.
Our model demonstrated promising potential for the detection and anatomical localization of CMBs, although further research with a larger and more diverse population is necessary to establish clinical utility in real-world settings.
脑微出血(CMBs)的检测和定位对于疾病诊断和治疗计划至关重要。然而,由于其与模拟物的视觉相似性,CMB 的检测具有劳动强度大、耗时且具有挑战性。本研究旨在验证一种三维(3D)深度学习模型的性能,该模型不仅可以检测 CMBs,还可以在实际环境中识别其解剖位置。
2023 年 1 月至 2023 年 10 月期间,在神经外科门诊共对 21 名患者的 116 个 CMBs 和 12 个无 CMBs 进行了检查。三位读者,包括一名经过董事会认证的神经放射科医生(读者 1)、一名放射科住院医师(读者 2)和一名神经外科医生(读者 3),在没有任何人工智能辅助的情况下,独立检查了 33 名患者的 SWI,以检测 CMBs,并将其位置分为叶、深部和幕下区域。在一个月的洗脱期后,将相同的数据集随机重新分配,并在 3D 深度学习模型的辅助下再次由读者进行检查。比较了有和没有人工智能辅助的读者的诊断性能。
所有使用人工智能辅助的读者(读者 1:0.991 [0.930-0.999],读者 2:0.922 [0.881-0.905]和读者 3:0.966 [0.928-0.984])的每例病变敏感性均高于仅使用人工智能的读者(读者 1:0.905 [0.849-0.942],读者 2:0.621 [0.541-0.694]和读者 3:0.871 [0.759-0.935],p=0.132,0.017 和 0.227)。特别是,使用人工智能时,放射科住院医师(读者 2)的每例病变敏感性有统计学显著提高。所有使用人工智能辅助的读者(读者 1:0.394 [0.152-1.021],读者 2:0.727 [0.334-1.582]和读者 3:0.182 [0.077-0.429])和仅使用人工智能的读者(读者 1:0.364 [0.159-0.831],读者 2:0.576 [0.240-1.382]和读者 3:0.121 [0.038-0.383])的每位患者的假阳性数量没有统计学显著差异(p=0.853,0.251 和 0.157)。我们的模型准确地对所有 CMBs 的解剖位置进行了分类。
尽管需要进一步研究更大、更多样化的人群以在实际环境中确立临床实用性,但我们的模型在 CMBs 的检测和解剖定位方面表现出了有前景的潜力。