Villringer K, Sokiranski R, Opfer R, Spies L, Hamann M, Bormann A, Brehmer M, Galinovic I, Fiebach J B
Center for Stroke Research Berlin, Universitätsmedizin Berlin, Berlin, Germany.
Medizinische Versorgungszentren DRZ GmbH, Heidelberg, Germany.
Clin Neuroradiol. 2025 Mar;35(1):115-122. doi: 10.1007/s00062-024-01461-9. Epub 2024 Sep 26.
Intracranial hemorrhage (ICH) is a life-threatening condition requiring rapid diagnostic and therapeutic action. This study evaluates whether Artificial intelligence (AI) can provide high-quality ICH diagnostics and turnaround times suitable for routine radiological practice.
A convolutional neural network (CNN) was trained and validated to detect ICHs on DICOM images of cranial CT (CCT) scans, utilizing about 674,000 individually labeled slices. The CNN was then incorporated into a commercial AI engine and seamlessly integrated into three pilot centers in Germany. A real-world test-dataset was extracted and manually annotated by two experienced experts. The performance of the AI algorithm against the two raters was assessed and compared to the inter-rater agreement. The overall time ranging from data acquisition to the delivery of the AI results was analyzed.
Out of 6284 CCT examinations acquired in three different centers, 947 (15%) had ICH. Breakdowns of hemorrhage types included 8% intraparenchymal, 3% intraventricular, 6% subarachnoidal, 7% subdural, < 1% epidural hematomas. Comparing the AI's performance on a subset of 255 patients with two expert raters, it achieved a sensitivity of 0.90, a specificity of 0.96, an accuracy of 0.96. The corresponding inter-rater agreement was 0.84, 0.98, and 0.96. The overall median processing times for the three centers were 9, 11, and 12 min, respectively.
We showed that an AI algorithm for the automatic detection of ICHs can be seamlessly integrated into clinical workflows with minimal turnaround time. The accuracy was on par with radiology experts, making the system suitable for routine clinical use.
颅内出血(ICH)是一种危及生命的疾病,需要迅速进行诊断和治疗。本研究评估人工智能(AI)是否能够提供适用于常规放射学实践的高质量ICH诊断及周转时间。
训练并验证了一个卷积神经网络(CNN),以在头颅CT(CCT)扫描的DICOM图像上检测ICH,使用了约674,000个单独标记的切片。然后将该CNN纳入一个商业AI引擎,并无缝集成到德国的三个试点中心。提取了一个真实世界的测试数据集,并由两位经验丰富的专家进行手动注释。评估了AI算法相对于两位评估者的性能,并与评估者间的一致性进行比较。分析了从数据采集到AI结果交付的总时间。
在三个不同中心进行的6284次CCT检查中,947例(15%)有ICH。出血类型的分类包括8%脑实质内出血、3%脑室内出血、6%蛛网膜下腔出血、7%硬膜下出血、<1%硬膜外血肿。将AI在255例患者子集上的性能与两位专家评估者进行比较,其灵敏度为0.90,特异度为0.96,准确度为0.96。相应的评估者间一致性分别为0.84、0.98和0.96。三个中心的总体中位处理时间分别为9分钟、11分钟和12分钟。
我们表明,一种用于自动检测ICH的AI算法可以以最短的周转时间无缝集成到临床工作流程中。其准确性与放射学专家相当,使该系统适用于常规临床应用。