Suppr超能文献

基于人工智能的CT出血检测工具的真实世界验证

Real world validation of an AI-based CT hemorrhage detection tool.

作者信息

Wang Dongang, Jin Ruilin, Shieh Chun-Chien, Ng Adrian Y, Pham Hiep, Dugal Tej, Barnett Michael, Winoto Luis, Wang Chenyu, Barnett Yael

机构信息

Sydney Neuroimaging Analysis Centre, Camperdown, NSW, Australia.

Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.

出版信息

Front Neurol. 2023 Aug 3;14:1177723. doi: 10.3389/fneur.2023.1177723. eCollection 2023.

Abstract

INTRODUCTION

Intracranial hemorrhage (ICH) is a potentially life-threatening medical event that requires expedited diagnosis with computed tomography (CT). Automated medical imaging triaging tools can rapidly bring scans containing critical abnormalities, such as ICH, to the attention of radiologists and clinicians. Here, we retrospectively investigated the real-world performance of VeriScout, an artificial intelligence-based CT hemorrhage detection and triage tool.

METHODS

Ground truth for the presence or absence of ICH was iteratively determined by expert consensus in an unselected dataset of 527 consecutively acquired non-contrast head CT scans, which were sub-grouped according to the presence of artefact, post-operative features and referral source. The performance of VeriScout was compared with the ground truths for all groups.

RESULTS

VeriScout detected hemorrhage with a sensitivity of 0.92 (CI 0.84-0.96) and a specificity of 0.96 (CI 0.94-0.98) in the global dataset, exceeding the sensitivity of general radiologists (0.88) with only a minor relative decrement in specificity (0.98). Crucially, the AI tool detected 13/14 cases of subarachnoid hemorrhage, a potentially fatal condition that is often missed in emergency department settings. There was no decrement in the performance of VeriScout in scans containing artefact or postoperative change. Using an integrated informatics platform, VeriScout was deployed into the existing radiology workflow. Detected hemorrhage cases were flagged in the hospital radiology information system (RIS) and relevant, annotated, preview images made available in the picture archiving and communications system (PACS) within 10 min.

CONCLUSION

AI-based radiology worklist prioritization for critical abnormalities, such as ICH, may enhance patient care without adding to radiologist or clinician burden.

摘要

引言

颅内出血(ICH)是一种可能危及生命的医疗事件,需要通过计算机断层扫描(CT)进行快速诊断。自动化医学影像分类工具可以迅速将包含诸如颅内出血等关键异常的扫描影像提请放射科医生和临床医生注意。在此,我们回顾性研究了VeriScout这一基于人工智能的CT出血检测与分类工具在现实世界中的性能。

方法

在一个包含527例连续获取的非增强头部CT扫描的未选择数据集中,通过专家共识反复确定颅内出血存在与否的真实情况,这些扫描根据伪影、术后特征和转诊来源进行了分组。将VeriScout的性能与所有组的真实情况进行比较。

结果

在全局数据集中,VeriScout检测出血的灵敏度为0.92(95%置信区间0.84 - 0.96),特异度为0.96(95%置信区间0.94 - 0.98),超过了普通放射科医生的灵敏度(0.88),而特异度仅有轻微相对下降(0.98)。至关重要的是,该人工智能工具检测出了14例蛛网膜下腔出血病例中的13例,蛛网膜下腔出血是一种在急诊科环境中常被漏诊的潜在致命疾病。在包含伪影或术后改变的扫描中,VeriScout的性能没有下降。通过使用集成信息学平台,VeriScout被部署到现有的放射学工作流程中。检测到的出血病例在医院放射学信息系统(RIS)中被标记,相关的、带有注释的预览图像在10分钟内即可在图像存档与通信系统(PACS)中获取。

结论

基于人工智能的针对诸如颅内出血等关键异常的放射学工作列表优先级排序,可能在不增加放射科医生或临床医生负担的情况下改善患者护理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f80/10435741/fded49a401f7/fneur-14-1177723-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验