Raubitzek Sebastian, Schatten Alexander, König Philip, Marica Edina, Eresheim Sebastian, Mallinger Kevin
Complexity and Resilience Research Group, SBA Research gGmbH, Floragasse 7/5.OG, 1040 Vienna, Austria.
Institute of Information Systems Engineering, TU Wien, Favoritenstrasse 9-11/194, 1040 Vienna, Austria.
Entropy (Basel). 2024 Sep 22;26(9):808. doi: 10.3390/e26090808.
Assembly Theory provides a promising framework to explain the complexity of systems such as molecular structures and the origins of life, with broad applicability across various disciplines. In this study, we explore and consolidate different aspects of Assembly Theory by introducing a simplified Toy Model to simulate the autocatalytic formation of complex structures. This model abstracts the molecular formation process, focusing on the probabilistic control of catalysis rather than the intricate interactions found in organic chemistry. We establish a connection between probabilistic catalysis events and key principles of Assembly Theory, particularly the probability of a possible construction path in the formation of a complex object, and examine how the assembly of complex objects is impacted by the presence of autocatalysis. Our findings suggest that this presence of autocatalysis tends to favor longer consecutive construction sequences in environments with a low probability of catalysis, while this bias diminishes in environments with higher catalysis probabilities, highlighting the significant influence of environmental factors on the assembly of complex structures.
组装理论为解释诸如分子结构等系统的复杂性以及生命起源提供了一个很有前景的框架,在各个学科中都有广泛的适用性。在本研究中,我们通过引入一个简化的玩具模型来模拟复杂结构的自催化形成,探索并巩固组装理论的不同方面。该模型抽象了分子形成过程,重点关注催化的概率控制,而非有机化学中复杂的相互作用。我们建立了概率催化事件与组装理论关键原理之间的联系,特别是复杂物体形成过程中可能构建路径的概率,并研究自催化的存在如何影响复杂物体的组装。我们的研究结果表明,在催化概率较低的环境中,自催化的存在倾向于有利于更长的连续构建序列,而在催化概率较高的环境中这种偏差会减小,这突出了环境因素对复杂结构组装的重大影响。