Suppr超能文献

通过机器学习对相分离进行整合来解码错义变异。

Decoding Missense Variants by Incorporating Phase Separation via Machine Learning.

机构信息

Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China.

The Collaborative Innovation Center for Brain Science, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Nat Commun. 2024 Sep 27;15(1):8279. doi: 10.1038/s41467-024-52580-3.

Abstract

Computational models have made significant progress in predicting the effect of protein variants. However, deciphering numerous variants of uncertain significance (VUS) located within intrinsically disordered regions (IDRs) remains challenging. To address this issue, we introduce phase separation, which is tightly linked to IDRs, into the investigation of missense variants. Phase separation is vital for multiple physiological processes. By leveraging missense variants that alter phase separation propensity, we develop a machine learning approach named PSMutPred to predict the impact of missense mutations on phase separation. PSMutPred demonstrates robust performance in predicting missense variants that affect natural phase separation. In vitro experiments further underscore its validity. By applying PSMutPred on over 522,000 ClinVar missense variants, it significantly contributes to decoding the pathogenesis of disease variants, especially those in IDRs. Our work provides insights into the understanding of a vast number of VUSs in IDRs, expediting clinical interpretation and diagnosis.

摘要

计算模型在预测蛋白质变异体的影响方面取得了重大进展。然而,解析位于无序区域 (IDR) 内的大量不确定意义的变异体 (VUS) 仍然具有挑战性。为了解决这个问题,我们将与 IDR 紧密相关的相分离引入到对错义变异体的研究中。相分离对于多种生理过程至关重要。通过利用改变相分离倾向的错义变异体,我们开发了一种名为 PSMutPred 的机器学习方法,用于预测错义突变对相分离的影响。PSMutPred 在预测影响自然相分离的错义变异体方面表现出强大的性能。体外实验进一步证实了其有效性。通过在超过 522,000 个 ClinVar 错义变异体上应用 PSMutPred,它极大地促进了解码疾病变异体的发病机制,特别是那些位于 IDR 中的变异体。我们的工作为理解 IDR 中大量的 VUS 提供了深入的了解,加速了临床解释和诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1270/11436885/649be4ecccf2/41467_2024_52580_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验