文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种使用 KNN 插补和有效数据挖掘技术预测糖尿病患者的自动化方法。

An automated approach to predict diabetic patients using KNN imputation and effective data mining techniques.

机构信息

College of Computer Science and Engineering, University of Hafr Al-Batin, Hafr Al-Batin, 39524, Saudi Arabia.

Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia.

出版信息

BMC Med Res Methodol. 2024 Sep 27;24(1):221. doi: 10.1186/s12874-024-02324-0.


DOI:10.1186/s12874-024-02324-0
PMID:39333904
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11438170/
Abstract

Diabetes is thought to be the most common illness in underdeveloped nations. Early detection and competent medical care are crucial steps in reducing the effects of diabetes. Examining the signs associated with diabetes is one of the most effective ways to identify the condition. The problem of missing data is not very well investigated in existing works. In addition, existing studies on diabetes detection lack accuracy and robustness. The available datasets frequently contain missing information for the automated detection of diabetes, which might negatively impact machine learning model performance. This work suggests an automated diabetes prediction method that achieves high accuracy and effectively manages missing variables in order to address this problem. The proposed strategy employs a stacked ensemble voting classifier model with three machine learning models. and a KNN Imputer to handle missing values. Using the KNN imputer, the suggested model performs exceptionally well, with accuracy, precision, recall, F1 score, and MCC of 98.59%, 99.26%, 99.75%, 99.45%, and 99.24%, respectively. In two scenarios one with missing values eliminated and the other with KNN imputer, the study thoroughly compared the suggested model with seven other machine learning techniques. The outcomes demonstrate the superiority of the suggested model over current state-of-the-art methods and confirm its efficacy. This work demonstrates the capability of KNN imputer and looks at the problem of missing values for diabetes detection. Medical professionals can utilize the results to improve care for diabetes patients and discover problems early.

摘要

糖尿病被认为是欠发达国家最常见的疾病。早期发现和专业的医疗护理是减少糖尿病影响的关键步骤。检查与糖尿病相关的症状是识别这种疾病的最有效方法之一。在现有工作中,对缺失数据的问题研究得还不够充分。此外,现有的糖尿病检测研究缺乏准确性和稳健性。现有的数据集经常包含用于糖尿病自动检测的缺失信息,这可能会对机器学习模型的性能产生负面影响。这项工作提出了一种自动化的糖尿病预测方法,该方法可以实现高精度,并有效地管理缺失变量,以解决这个问题。所提出的策略采用了具有三个机器学习模型的堆叠集成投票分类器模型和 KNN 插补器来处理缺失值。使用 KNN 插补器,所提出的模型表现出色,准确率、精度、召回率、F1 得分和 MCC 分别为 98.59%、99.26%、99.75%、99.45%和 99.24%。在两种情况下,一种是消除缺失值,另一种是使用 KNN 插补器,研究彻底比较了所提出的模型与其他七种机器学习技术。结果表明,所提出的模型优于当前最先进的方法,并证实了其有效性。这项工作展示了 KNN 插补器的能力,并研究了糖尿病检测中缺失值的问题。医疗专业人员可以利用这些结果来改善对糖尿病患者的护理,并及早发现问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3ea/11438170/c41f28605c89/12874_2024_2324_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3ea/11438170/d2299ee15903/12874_2024_2324_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3ea/11438170/dfbbb5c22c24/12874_2024_2324_Figa_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3ea/11438170/016fd1956001/12874_2024_2324_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3ea/11438170/e0d9a92ebee6/12874_2024_2324_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3ea/11438170/21c9b798cc1c/12874_2024_2324_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3ea/11438170/c41f28605c89/12874_2024_2324_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3ea/11438170/d2299ee15903/12874_2024_2324_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3ea/11438170/dfbbb5c22c24/12874_2024_2324_Figa_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3ea/11438170/016fd1956001/12874_2024_2324_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3ea/11438170/e0d9a92ebee6/12874_2024_2324_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3ea/11438170/21c9b798cc1c/12874_2024_2324_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3ea/11438170/c41f28605c89/12874_2024_2324_Fig5_HTML.jpg

相似文献

[1]
An automated approach to predict diabetic patients using KNN imputation and effective data mining techniques.

BMC Med Res Methodol. 2024-9-27

[2]
Cervical cancer detection using K nearest neighbor imputer and stacked ensemble learningmodel.

Digit Health. 2023-10-3

[3]
Improving Prediction of Cervical Cancer Using KNN Imputed SMOTE Features and Multi-Model Ensemble Learning Approach.

Cancers (Basel). 2023-9-4

[4]
Improving prediction of cervical cancer using KNN imputer and multi-model ensemble learning.

PLoS One. 2024

[5]
Novel ensemble learning approach with SVM-imputed ADASYN features for enhanced cervical cancer prediction.

PLoS One. 2024

[6]
Prediction of diabetes disease using an ensemble of machine learning multi-classifier models.

BMC Bioinformatics. 2023-9-12

[7]
Improving mortality prediction in Acute Pancreatitis by machine learning and data augmentation.

Comput Biol Med. 2022-11

[8]
An intelligent warning model for early prediction of cardiac arrest in sepsis patients.

Comput Methods Programs Biomed. 2019-6-11

[9]
Large scale biomedical texts classification: a kNN and an ESA-based approaches.

J Biomed Semantics. 2016-6-16

[10]
An Ensemble Approach for the Prediction of Diabetes Mellitus Using a Soft Voting Classifier with an Explainable AI.

Sensors (Basel). 2022-9-25

引用本文的文献

[1]
Machine Learning-Driven Insights in Cancer Metabolomics: From Subtyping to Biomarker Discovery and Prognostic Modeling.

Metabolites. 2025-8-1

[2]
Postpartum depression risk prediction using explainable machine learning algorithms.

Front Med (Lausanne). 2025-8-7

[3]
Explainable AI for Chronic Kidney Disease Prediction in Medical IoT: Integrating GANs and Few-Shot Learning.

Bioengineering (Basel). 2025-3-29

本文引用的文献

[1]
An ensemble learning approach for diabetes prediction using boosting techniques.

Front Genet. 2023-10-26

[2]
The imperative for regulatory oversight of large language models (or generative AI) in healthcare.

NPJ Digit Med. 2023-7-6

[3]
Diabetes prediction using machine learning and explainable AI techniques.

Healthc Technol Lett. 2022-12-14

[4]
Early Prediction of Diabetes Using an Ensemble of Machine Learning Models.

Int J Environ Res Public Health. 2022-9-28

[5]
An Ensemble Approach to Predict Early-Stage Diabetes Risk Using Machine Learning: An Empirical Study.

Sensors (Basel). 2022-7-13

[6]
Continuous Glucose Monitoring in Healthy Adults-Possible Applications in Health Care, Wellness, and Sports.

Sensors (Basel). 2022-3-5

[7]
A CNN based coronavirus disease prediction system for chest X-rays.

J Ambient Intell Humaniz Comput. 2022-2-27

[8]
Machine Learning Based Diabetes Classification and Prediction for Healthcare Applications.

J Healthc Eng. 2021

[9]
Deep transfer learning and data augmentation improve glucose levels prediction in type 2 diabetes patients.

NPJ Digit Med. 2021-7-14

[10]
Prediction of Type 2 Diabetes Based on Machine Learning Algorithm.

Int J Environ Res Public Health. 2021-3-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索