Suppr超能文献

基于改进YOLOv8n和DeepSORT的工业场景着装规范监测方法

Dress Code Monitoring Method in Industrial Scene Based on Improved YOLOv8n and DeepSORT.

作者信息

Zou Jiadong, Song Tao, Cao Songxiao, Zhou Bin, Jiang Qing

机构信息

College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China.

出版信息

Sensors (Basel). 2024 Sep 19;24(18):6063. doi: 10.3390/s24186063.

Abstract

Deep learning-based object detection has become a powerful tool in dress code monitoring. However, even state-of-the-art detection models inevitably suffer from false alarms or missed detections, especially when handling small targets such as hats and masks. To overcome these limitations, this paper proposes a novel method for dress code monitoring using an improved YOLOv8n model, the DeepSORT tracking, and a new dress code judgment criterion. We improve the YOLOv8n model through three means: (1) a new neck structure named FPN-PAN-FPN (FPF) is introduced to enhance the model's feature fusion capability, (2) Receptive-Field Attention convolutional operation (RFAConv) is utilized to better capture the difference in information brought by different positions, and a (3) Focused Linear Attention (FLatten) mechanism is added to expand the model's receptive field. This improved YOLOv8n model increases mAP while reducing model size. Next, DeepSORT is integrated to obtain instance information across multi-frames. Finally, we adopt a new judgment criterion to conduct real-scene dress code monitoring. The experimental results show that our method effectively identifies instances of dress violations, reduces false alarms, and improves accuracy.

摘要

基于深度学习的目标检测已成为着装规范监测中的一个强大工具。然而,即使是最先进的检测模型也不可避免地会出现误报或漏检情况,尤其是在处理帽子和口罩等小目标时。为了克服这些限制,本文提出了一种使用改进的YOLOv8n模型、DeepSORT跟踪和新的着装规范判断标准进行着装规范监测的新方法。我们通过三种方式改进YOLOv8n模型:(1)引入一种名为FPN-PAN-FPN(FPF)的新颈部结构,以增强模型的特征融合能力;(2)利用感受野注意力卷积操作(RFAConv)更好地捕捉不同位置带来的信息差异;(3)添加聚焦线性注意力(FLatten)机制以扩大模型的感受野。这种改进的YOLOv8n模型在减小模型大小的同时提高了平均精度均值(mAP)。接下来,集成DeepSORT以获取跨多帧的实例信息。最后,我们采用新的判断标准进行实际场景中的着装规范监测。实验结果表明,我们的方法能够有效地识别着装违规实例,减少误报,并提高准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/376d/11436014/7afddbbaf16f/sensors-24-06063-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验