Suppr超能文献

利用钯掺杂氧化锌纳米催化剂实现可见光诱导的硝基有机污染物的高效可持续修复。

Visible-light induced effective and sustainable remediation of nitro organics pollutants using Pd-doped ZnO nanocatalyst.

作者信息

Vikal Sagar, Meena Savita, Gautam Yogendra K, Kumar Ashwani, Sethi Mukul, Meena Swati, Gautam Durvesh, Singh Beer Pal, Agarwal Prakash Chandra, Meena Mohan Lal, Parewa Vijay

机构信息

Smart Materials and Sensor Laboratory, Department of Physics, Chaudhary Charan Singh University, Uttar Pradesh, Meerut, 250004, India.

Centre of Advanced Studies, Department of Chemistry, University of Rajasthan, Jaipur, India.

出版信息

Sci Rep. 2024 Sep 28;14(1):22430. doi: 10.1038/s41598-024-72713-4.

Abstract

Nitroaromatic compounds represent a class of highly toxic pollutants discharged into aquatic environments by various industrial activities, posing significant threats to ecological integrity and human health due to their persistent and hazardous nature. In this study, Pd-doped ZnO nanoparticles were investigated as a potential solution for the degradation of nitro organics, offering heightened photocatalytic efficacy and prolonged stability. The synthesis of Pd-doped ZnO NPs was achieved via the hydrothermal method, with subsequent analysis through XRD spectra and XPS confirming successful Pd doping within the ZnO matrix. Characterization through FESEM and HRTEM unveiled the heterogeneous morphologies of both undoped and Pd-doped ZnO nanoparticles. Additionally, UV-vis and PL spectroscopy provided insights into the optical properties, chemical bonding, and defect structures of the synthesized Pd-doped ZnO NPs. Pd doping induces a redshift in ZnO's absorption spectra, reducing the bandgap from 3.12 to 2.94 eV as Pd concentration rises from 0 to 0.2 wt.%. The photocatalytic degradation, following pseudo-first-order kinetics, achieved 90% nitrobenzene abatement (200 µg/L, pH 7) under visible light within 320 min with a catalyst loading of 16 µg/mL. The photocatalytic efficacy of 0.08 wt% Pd-doped ZnO (k = 0.058 min⁻) exhibited a 25-fold enhancement compared to bare ZnO (k = 3.1 × 10 min). Subsequent quenching and ESR experiments identified hydroxyl radicals (OH) as the predominant active species in the degradation mechanism. Mass spectrometry analysis unveiled potential breakdown intermediates, illuminating a plausible degradation pathway. The investigated Pd-doped ZnO nanoparticles demonstrated reusability for up to five successive treatment cycles, offering a sustainable solution to nitro organics contamination challenges.

摘要

硝基芳香族化合物是一类由各种工业活动排放到水生环境中的高毒性污染物,由于其持久性和危险性,对生态完整性和人类健康构成重大威胁。在本研究中,研究了钯掺杂的氧化锌纳米颗粒作为降解硝基有机物的潜在解决方案,具有更高的光催化效率和更长的稳定性。通过水热法合成了钯掺杂的氧化锌纳米颗粒,随后通过XRD光谱和XPS分析证实了在氧化锌基质中成功掺杂了钯。通过FESEM和HRTEM表征揭示了未掺杂和钯掺杂的氧化锌纳米颗粒的异质形态。此外,紫外可见光谱和光致发光光谱提供了对合成的钯掺杂氧化锌纳米颗粒的光学性质、化学键合和缺陷结构的深入了解。随着钯浓度从0增加到0.2 wt.%,钯掺杂导致氧化锌吸收光谱发生红移,带隙从3.12 eV减小到2.94 eV。在可见光下,光催化降解遵循准一级动力学,在320分钟内实现了90%的硝基苯去除率(200 μg/L,pH 7),催化剂负载量为16 μg/mL。0.08 wt%钯掺杂氧化锌的光催化效率(k = 0.058 min⁻¹)与未掺杂的氧化锌(k = 3.1×10⁻³ min⁻¹)相比提高了25倍。随后的猝灭和电子自旋共振实验确定羟基自由基(·OH)是降解机制中的主要活性物种。质谱分析揭示了潜在的分解中间体,阐明了可能的降解途径。所研究的钯掺杂氧化锌纳米颗粒在连续五个处理循环中表现出可重复使用性,为硝基有机物污染挑战提供了可持续的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d196/11438909/a03bb89f8065/41598_2024_72713_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验