Gómez Eduardo Galicia, Torres-Robles Fabián, Perez-Gonzalez Jorge, Arámbula Cosío Fernando
Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
Laboratorio de Física Médica, Instituto de Física, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
J Imaging. 2025 May 20;11(5):165. doi: 10.3390/jimaging11050165.
Left ventricle (LV) segmentation is crucial for cardiac diagnosis but remains challenging in echocardiography. We present ShapeNet, a fully automatic method combining a convolutional neural network (CNN) ensemble with an improved active shape model (ASM). ShapeNet predicts optimal pose (rotation, translation, and scale) and shape parameters, which are refined using the improved ASM. The ASM optimizes an objective function constructed from gray-level profiles concatenated into a single contour appearance vector. The model was trained on 4800 augmented CAMUS images and tested on both CAMUS and EchoNet databases. It achieved a Dice coefficient of 0.87 and a Hausdorff Distance (HD) of 4.08 pixels on CAMUS, and a Dice coefficient of 0.81 with an HD of 10.21 pixels on EchoNet, demonstrating robust performance across datasets. These results highlight the improved accuracy in HD compared to previous semantic and shape-based segmentation methods by generating statistically valid LV contours from ultrasound images.
左心室(LV)分割对于心脏诊断至关重要,但在超声心动图中仍然具有挑战性。我们提出了ShapeNet,这是一种将卷积神经网络(CNN)集成与改进的主动形状模型(ASM)相结合的全自动方法。ShapeNet预测最佳姿态(旋转、平移和缩放)和形状参数,并使用改进的ASM对其进行细化。ASM优化了一个目标函数,该函数由连接成单个轮廓外观向量的灰度轮廓构建而成。该模型在4800张增强的CAMUS图像上进行训练,并在CAMUS和EchoNet数据库上进行测试。它在CAMUS上实现了0.87的Dice系数和4.08像素的豪斯多夫距离(HD),在EchoNet上实现了0.81的Dice系数和10.21像素的HD,证明了在不同数据集上的稳健性能。这些结果突出了与以前基于语义和形状的分割方法相比,HD精度的提高,通过从超声图像生成统计上有效的LV轮廓。