Suppr超能文献

“ShapeNet”:一种应用于超声心动图左心室分割的形状回归卷积神经网络集成

"ShapeNet": A Shape Regression Convolutional Neural Network Ensemble Applied to the Segmentation of the Left Ventricle in Echocardiography.

作者信息

Gómez Eduardo Galicia, Torres-Robles Fabián, Perez-Gonzalez Jorge, Arámbula Cosío Fernando

机构信息

Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.

Laboratorio de Física Médica, Instituto de Física, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.

出版信息

J Imaging. 2025 May 20;11(5):165. doi: 10.3390/jimaging11050165.

Abstract

Left ventricle (LV) segmentation is crucial for cardiac diagnosis but remains challenging in echocardiography. We present ShapeNet, a fully automatic method combining a convolutional neural network (CNN) ensemble with an improved active shape model (ASM). ShapeNet predicts optimal pose (rotation, translation, and scale) and shape parameters, which are refined using the improved ASM. The ASM optimizes an objective function constructed from gray-level profiles concatenated into a single contour appearance vector. The model was trained on 4800 augmented CAMUS images and tested on both CAMUS and EchoNet databases. It achieved a Dice coefficient of 0.87 and a Hausdorff Distance (HD) of 4.08 pixels on CAMUS, and a Dice coefficient of 0.81 with an HD of 10.21 pixels on EchoNet, demonstrating robust performance across datasets. These results highlight the improved accuracy in HD compared to previous semantic and shape-based segmentation methods by generating statistically valid LV contours from ultrasound images.

摘要

左心室(LV)分割对于心脏诊断至关重要,但在超声心动图中仍然具有挑战性。我们提出了ShapeNet,这是一种将卷积神经网络(CNN)集成与改进的主动形状模型(ASM)相结合的全自动方法。ShapeNet预测最佳姿态(旋转、平移和缩放)和形状参数,并使用改进的ASM对其进行细化。ASM优化了一个目标函数,该函数由连接成单个轮廓外观向量的灰度轮廓构建而成。该模型在4800张增强的CAMUS图像上进行训练,并在CAMUS和EchoNet数据库上进行测试。它在CAMUS上实现了0.87的Dice系数和4.08像素的豪斯多夫距离(HD),在EchoNet上实现了0.81的Dice系数和10.21像素的HD,证明了在不同数据集上的稳健性能。这些结果突出了与以前基于语义和形状的分割方法相比,HD精度的提高,通过从超声图像生成统计上有效的LV轮廓。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd45/12112286/eeec1df6ea16/jimaging-11-00165-g002.jpg

相似文献

2
Fully Automatic initialization and segmentation of left and right ventricles for large-scale cardiac MRI using a deeply supervised network and 3D-ASM.
Comput Methods Programs Biomed. 2023 Oct;240:107679. doi: 10.1016/j.cmpb.2023.107679. Epub 2023 Jun 14.
5
Automatic segmentation of the left ventricle in echocardiographic images using convolutional neural networks.
Quant Imaging Med Surg. 2021 May;11(5):1763-1781. doi: 10.21037/qims-20-745.
6
SAUN: Stack attention U-Net for left ventricle segmentation from cardiac cine magnetic resonance imaging.
Med Phys. 2021 Apr;48(4):1750-1763. doi: 10.1002/mp.14752. Epub 2021 Mar 4.
7
Echocardiographic image multi-structure segmentation using Cardiac-SegNet.
Med Phys. 2021 May;48(5):2426-2437. doi: 10.1002/mp.14818. Epub 2021 Apr 1.
8
A distance map regularized CNN for cardiac cine MR image segmentation.
Med Phys. 2019 Dec;46(12):5637-5651. doi: 10.1002/mp.13853. Epub 2019 Oct 31.
9
Comparative analysis of active contour and convolutional neural network in rapid left-ventricle volume quantification using echocardiographic imaging.
Comput Methods Programs Biomed. 2021 Feb;199:105914. doi: 10.1016/j.cmpb.2020.105914. Epub 2020 Dec 17.
10
BEAS-Net: A Shape-Prior-Based Deep Convolutional Neural Network for Robust Left Ventricular Segmentation in 2-D Echocardiography.
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Nov;71(11):1565-1576. doi: 10.1109/TUFFC.2024.3418030. Epub 2024 Nov 27.

本文引用的文献

2
Boundary attention with multi-task consistency constraints for semi-supervised 2D echocardiography segmentation.
Comput Biol Med. 2024 Mar;171:108100. doi: 10.1016/j.compbiomed.2024.108100. Epub 2024 Feb 5.
3
Robust cardiac segmentation corrected with heuristics.
PLoS One. 2023 Oct 27;18(10):e0293560. doi: 10.1371/journal.pone.0293560. eCollection 2023.
4
Left ventricle segmentation combining deep learning and deformable models with anatomical constraints.
J Biomed Inform. 2023 Jun;142:104366. doi: 10.1016/j.jbi.2023.104366. Epub 2023 Apr 21.
5
An Overview of Deep Learning Methods for Left Ventricle Segmentation.
Comput Intell Neurosci. 2023 Jan 30;2023:4208231. doi: 10.1155/2023/4208231. eCollection 2023.
6
Left ventricle segmentation in transesophageal echocardiography images using a deep neural network.
PLoS One. 2023 Jan 20;18(1):e0280485. doi: 10.1371/journal.pone.0280485. eCollection 2023.
7
Dense-PSP-UNet: A neural network for fast inference liver ultrasound segmentation.
Comput Biol Med. 2023 Feb;153:106478. doi: 10.1016/j.compbiomed.2022.106478. Epub 2022 Dec 31.
8
Improving Anatomical Plausibility in Medical Image Segmentation via Hybrid Graph Neural Networks: Applications to Chest X-Ray Analysis.
IEEE Trans Med Imaging. 2023 Feb;42(2):546-556. doi: 10.1109/TMI.2022.3224660. Epub 2023 Feb 2.
9
Estimating Echocardiographic Myocardial Strain of Left Ventricle with Deep Learning.
Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:3891-3894. doi: 10.1109/EMBC48229.2022.9872008.
10
Recent advances and clinical applications of deep learning in medical image analysis.
Med Image Anal. 2022 Jul;79:102444. doi: 10.1016/j.media.2022.102444. Epub 2022 Apr 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验