Suppr超能文献

用于增强周期性运动中肌肉激活模式评估的开源工具箱。

An open-source toolbox for enhancing the assessment of muscle activation patterns during cyclical movements.

机构信息

BIOLAB, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy.

PoliToBIOMed Lab, Politecnico di Torino, Turin, Italy.

出版信息

Physiol Meas. 2024 Oct 11;45(10). doi: 10.1088/1361-6579/ad814f.

Abstract

The accurate temporal analysis of muscle activations is of great importance in several research areas spanning from the assessment of altered muscle activation patterns in orthopaedic and neurological patients to the monitoring of their motor rehabilitation. Several studies have highlighted the challenge of understanding and interpreting muscle activation patterns due to the high cycle-by-cycle variability of the sEMG data. This makes it difficult to interpret results and to use sEMG signals in clinical practice. To overcome this limitation, this study aims at presenting a toolbox to help scientists easily characterize and assess muscle activation patterns during cyclical movements.CIMAP(Clustering for the Identification of Muscle Activation Patterns) is an open-source Python toolbox based on agglomerative hierarchical clustering that aims at characterizing muscle activation patterns during cyclical movements by grouping movement cycles showing similar muscle activity.From muscle activation intervals to the graphical representation of the agglomerative hierarchical clustering dendrograms, the proposed toolbox offers a complete analysis framework for enabling the assessment of muscle activation patterns. The toolbox can be flexibly modified to comply with the necessities of the scientist.CIMAPis addressed to scientists of any programming skill level working in different research areas such as biomedical engineering, robotics, sports, clinics, biomechanics, and neuroscience. CIMAP is freely available on GitHub (https://github.com/Biolab-PoliTO/CIMAP).CIMAPtoolbox offers scientists a standardized method for analyzing muscle activation patterns during cyclical movements.

摘要

肌肉激活的准确时间分析在几个研究领域中非常重要,这些研究领域涵盖了从评估矫形和神经科患者肌肉激活模式的改变到监测他们的运动康复。由于表面肌电 (sEMG) 数据的循环间高度可变性,因此有几项研究强调了理解和解释肌肉激活模式的挑战性。这使得解释结果和在临床实践中使用 sEMG 信号变得困难。为了克服这一限制,本研究旨在提出一个工具箱,以帮助科学家轻松地对周期性运动中的肌肉激活模式进行特征描述和评估。CIMAP(肌肉激活模式聚类)是一个基于凝聚层次聚类的开源 Python 工具箱,旨在通过对显示相似肌肉活动的运动周期进行分组,来对周期性运动中的肌肉激活模式进行特征描述。从肌肉激活间隔到凝聚层次聚类树状图的图形表示,该提出的工具箱提供了一个完整的分析框架,用于评估肌肉激活模式。该工具箱可以灵活地修改,以满足科学家的需求。CIMAP 面向任何编程技能水平的科学家开放,他们在不同的研究领域工作,如生物医学工程、机器人技术、运动、临床、生物力学和神经科学。CIMAP 可在 GitHub(https://github.com/Biolab-PoliTO/CIMAP)上免费获得。CIMAP 工具箱为科学家提供了一种标准化的方法,用于分析周期性运动中的肌肉激活模式。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验