Viswanatha Raghuvir, Entwisle Samuel, Hu Claire, Reap Kelly, Butnaru Matthew, Mohr Stephanie E, Perrimon Norbert
Department of Genetics, Harvard Medical School, Boston, MA 02115.
Howard Hughes Medical Institute, Boston, MA 02115.
bioRxiv. 2024 Sep 25:2024.09.19.613976. doi: 10.1101/2024.09.19.613976.
CRISPR screens enable systematic, scalable genotype-to-phenotype mapping. We previously developed a pooled CRISPR screening method for and mosquito cell lines using plasmid transfection and site-specific integration to introduce single guide (sgRNA) libraries, followed by PCR and sequencing of integrated sgRNAs. While effective, the method relies on early constitutive Cas9 activity that potentially can lead to discrepancies between genome edits and sgRNAs detected by PCR, reducing screen accuracy. To address this issue, we introduce a new method to co-transfect a plasmid expressing the anti-CRISPR protein AcrIIa4 to suppress Cas9 activity during early sgRNA expression, which we term "IntAC" (integrase with anti-CRISPR). IntAC allowed us to construct a new CRISPR screening approach driven by the high strength promoter. This new library dramatically improved precision-recall of fitness genes across the genome, retrieving 90-95% of essential gene groups within 5% error, allowing us to generate the most comprehensive list of cell fitness genes yet assembled for . Our analysis determined that elevated sgRNA levels, made permissible by the IntAC approach, drove much of the improvement. The fitness genes show strong correlation with human fitness genes and underscore the effects of paralogs on gene essentiality. We further demonstrate that IntAC combined with a targeted sgRNA sub-library enabled precise positive selection of a transporter under solute overload. IntAC represents a straightforward enhancement to existing CRISPR screening methods, dramatically increasing accuracy, and might also be broadly applicable to virus-free CRISPR screens in other cell types, including mosquito, lepidopteran, tick, and mammalian cells.
CRISPR筛选能够实现系统的、可扩展的基因型到表型的映射。我们之前开发了一种用于果蝇和蚊子细胞系的混合CRISPR筛选方法,该方法利用质粒转染和位点特异性整合来引入单向导RNA(sgRNA)文库,随后对整合的sgRNA进行PCR和测序。虽然该方法有效,但它依赖于早期的组成型Cas9活性,这可能导致基因组编辑与通过PCR检测到的sgRNA之间出现差异,从而降低筛选准确性。为了解决这个问题,我们引入了一种新方法,即共转染一种表达抗CRISPR蛋白AcrIIa4的质粒,以在早期sgRNA表达过程中抑制Cas9活性,我们将其称为“IntAC”(整合酶与抗CRISPR)。IntAC使我们能够构建一种由高强度启动子驱动的新的CRISPR筛选方法。这个新文库显著提高了全基因组适应性基因的精确召回率,在5%的误差范围内检索到90 - 95%的必需基因组,使我们能够生成迄今为止为果蝇组装的最全面的细胞适应性基因列表。我们的分析确定,IntAC方法允许的sgRNA水平升高推动了大部分改进。果蝇的适应性基因与人类适应性基因显示出很强的相关性,并强调了旁系同源物对基因必需性的影响。我们进一步证明,IntAC与靶向sgRNA子文库相结合能够在溶质过载情况下对一种转运蛋白进行精确的阳性选择。IntAC是对现有果蝇CRISPR筛选方法的一种直接改进,显著提高了准确性,并且可能广泛适用于其他细胞类型的无病毒CRISPR筛选,包括蚊子、鳞翅目昆虫、蜱和哺乳动物细胞。