Suppr超能文献

用于评估欧洲 tick-borne 病原体风险的机器学习算法。

Machine learning algorithms for the evaluation of risk by tick-borne pathogens in Europe.

机构信息

Department of Animal Health, Faculty of Veterinary Medicine, University of Zaragoza, Zaragoza, Spain.

SaBio (Health and Biotechnology), Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain.

出版信息

Ann Med. 2024 Dec;56(1):2405074. doi: 10.1080/07853890.2024.2405074. Epub 2024 Sep 30.

Abstract

BACKGROUND

Tick-borne pathogens pose a major threat to human health worldwide. Understanding the epidemiology of tick-borne diseases to reduce their impact on human health requires models covering large geographic areas and considering both the abiotic traits that affect tick presence, as well as the vertebrates used as hosts, vegetation, and land use. Herein, we integrated the public information available for Europe regarding the variables that may affect habitat suitability for ticks and hosts and tested five machine learning algorithms (MLA) for predicting the distribution of four prominent tick species across Europe.

MATERIALS AND METHODS

A grid of cells 20 km in diameter was prepared to cover the entire territory, containing data on vegetation, points of water, habitat fragmentation, forest density, grass extension, or imperviousness, with information on temperature and water deficit. The distribution of the hosts (162 species) was modelled and included in the dataset. We used five MLA, namely, Random Forest, Neural Networks, Naive Bayes, Gradient Boosting, and AdaBoost, trained with reliable coordinates for , , , and in Europe.

RESULTS

Both Random Forest and Gradient Boosting best predicted ticks and host environmental niches. Our results demonstrate that MLA can identify trait-matching combinations of environmental niches. The inclusion of land cover and land use variables has a superior capacity for predicting areas suitable for ticks, compared to classic methods based on the use of climate data alone.

CONCLUSIONS

Flexible MLA-driven models may offer several advantages over traditional models. We anticipate that these results may be extrapolated to other regions and combinations of tick-vertebrates. These results highlight the potential of MLA for inference in ecology and provide a background for the evolution of a completely automatized tool to calculate the seasonality of ticks for early warning systems aimed at preventing tick-borne diseases.

摘要

背景

蜱传病原体对全球人类健康构成重大威胁。了解蜱传疾病的流行病学,以减少其对人类健康的影响,需要覆盖大面积地理区域的模型,同时考虑影响蜱存在的非生物特征,以及作为宿主的脊椎动物、植被和土地利用。在此,我们整合了欧洲有关可能影响蜱和宿主栖息地适宜性的变量的公共信息,并测试了五种机器学习算法(MLA)来预测欧洲四种主要蜱种的分布。

材料和方法

准备了一个直径为 20 公里的单元格网格,以覆盖整个领土,其中包含有关植被、水源点、生境破碎化、森林密度、草地延伸或不渗透性、温度和水分亏缺的信息。对宿主(162 种)的分布进行了建模,并将其包含在数据集内。我们使用了五种 MLA,即随机森林、神经网络、朴素贝叶斯、梯度提升和自适应增强,这些算法都经过了欧洲的可靠坐标训练。

结果

随机森林和梯度提升都能最好地预测蜱和宿主的环境小生境。我们的结果表明,MLA 可以识别环境小生境的特征匹配组合。与仅使用气候数据的经典方法相比,包含土地覆盖和土地利用变量的方法具有更高的预测适蜱区域的能力。

结论

灵活的 MLA 驱动模型可能比传统模型具有多个优势。我们预计,这些结果可以推广到其他地区和蜱-脊椎动物的组合。这些结果突出了 MLA 在生态学推断中的潜力,并为开发用于计算 ticks 季节性的完全自动化工具提供了背景,以便为预防蜱传疾病的预警系统提供早期预警。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55d2/11443563/f5aabf9692f3/IANN_A_2405074_F0001_C.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验