Suppr超能文献

随机调节模型的贝叶斯估计:效应量、覆盖率、检验功效和І型错误。

Bayesian estimation for the random moderation model: effect size, coverage, power of test, and type І error.

作者信息

Wei Dan, Zhan Peida

机构信息

Faculty of Psychology, Beijing Normal University, Beijing, China.

Shenzhen Bao'an Institute of Education Sciences, Shenzhen, China.

出版信息

Front Psychol. 2023 Jul 3;14:1048842. doi: 10.3389/fpsyg.2023.1048842. eCollection 2023.

Abstract

The random moderation model (RMM) was developed based on a two-level regression model to cope with heteroscedasticity in moderation analysis, and normal-distributed-based maximum likelihood (NML) estimation was developed to estimate the RMM. To present an alternative to the NML, this article discusses the effectiveness of Bayesian estimation for the RMM, aiming to explore a more practical method using the popular software Mplus. Through a simulation study, the RMM based on Bayesian estimation was investigated and compared to maximum likelihood (ML) estimations, including the NML and the default ML estimation in Mplus. The results indicated that the Bayesian approach outperformed the two ML estimations. It showed (a) higher accuracy for estimation of the effect size of the moderation effect; (b) higher 95% credibility interval coverage of the true value of the moderation effect; and (c) well-controlled and more stable type I error rates, while powers comparable to the ML estimations were provided.

摘要

随机调节模型(RMM)是基于二级回归模型开发的,用于处理调节分析中的异方差性,并且基于正态分布的最大似然(NML)估计被开发出来以估计RMM。为了提供NML的替代方法,本文讨论了贝叶斯估计对RMM的有效性,旨在探索一种使用流行软件Mplus的更实用方法。通过模拟研究,对基于贝叶斯估计的RMM进行了研究,并与最大似然(ML)估计进行了比较,包括NML和Mplus中的默认ML估计。结果表明,贝叶斯方法优于两种ML估计。它显示出:(a)对调节效应大小的估计具有更高的准确性;(b)调节效应真实值的95%可信区间覆盖率更高;以及(c)I型错误率得到良好控制且更稳定,同时提供了与ML估计相当的功效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a561/10350495/6ae9ba9a3da8/fpsyg-14-1048842-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验