Suppr超能文献

用于医疗器械增材制造的抗真菌附着聚合物。

Fungal Attachment-Resistant Polymers for the Additive Manufacture of Medical Devices.

机构信息

Centre for Additive Manufacturing, Department of Chemical and Environmental Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.

School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.

出版信息

ACS Appl Mater Interfaces. 2024 Oct 9;16(40):54508-54519. doi: 10.1021/acsami.4c04833. Epub 2024 Sep 30.

Abstract

This study reports the development of the first copolymer material that (i) is resistant to fungal attachment and hence biofilm formation, (ii) operates via a nonkilling mechanism, i.e., avoids the use of antifungal actives and the emergence of fungal resistance, (iii) exhibits sufficient elasticity for use in flexible medical devices, and (iv) is suitable for 3D printing (3DP), enabling the production of safer, personalized medical devices. () can form biofilms on in-dwelling medical devices, leading to potentially fatal fungal infections in the human host. Poly(dimethylsiloxane) (PDMS) is a common material used for the manufacture of medical devices, such as voice prostheses, but it is prone to microbial attachment. Therefore, to deliver a fungal-resistant polymer with key physical properties similar to PDMS (e.g., flexibility), eight homopolymers and 30 subsequent copolymers with varying glass transition temperatures () and fungal antiattachment properties were synthesized and their materials/processing properties studied. Of the copolymers produced, triethylene glycol methyl ether methacrylate (TEGMA) copolymerized with (r)-α-acryloyloxy-β,β-dimethyl-γ-butyrolactone (AODMBA) at a 40:60 copolymer ratio was found to be the most promising candidate by meeting all of the above criteria. This included demonstrating the capability to successfully undergo 3DP by material jetting, via the printing of a voice prosthesis valve-flap using the selected copolymer.

摘要

本研究报告了第一种共聚物材料的开发,该材料(i)能抵抗真菌附着,从而防止生物膜形成,(ii)通过非致死机制起作用,即避免使用抗真菌药物并防止真菌耐药性的出现,(iii)具有足够的弹性,可用于制造柔性医疗设备,(iv)适合 3D 打印(3DP),从而能够生产更安全、个性化的医疗设备。()能够在留置式医疗设备上形成生物膜,从而导致人体宿主中潜在致命的真菌感染。聚二甲基硅氧烷(PDMS)是一种常用于制造医疗器械的常见材料,例如人工语音假体,但它容易被微生物附着。因此,为了提供具有与 PDMS 相似的关键物理性能(例如柔韧性)的抗真菌聚合物,合成了八种均聚物和随后的 30 种具有不同玻璃化转变温度()和抗真菌附着性能的共聚物,并研究了它们的材料/加工性能。在所生产的共聚物中,三甘醇甲基醚甲基丙烯酸酯(TEGMA)与(r)-α-丙烯酰氧基-β,β-二甲基-γ-丁内酯(AODMBA)以 40:60 的共聚物比例共聚,被发现是最有前途的候选材料,因为它满足了所有上述标准。这包括通过材料喷射成功地通过 3DP 来展示能力,通过使用所选共聚物打印语音假体阀瓣。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c71/11472319/42c8b9e44e05/am4c04833_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验