Plant Disease Biology and Biotechnology, Rajiv Gandhi Centre for Biotechnology, Thycaud P.O, Thiruvananthapuram, 695014, Kerala, India.
National Centre for Biological Sciences (TIFR), GKVK Campus, Bangalore, 560065, Karnataka, India.
BMC Genomics. 2024 Sep 30;25(1):910. doi: 10.1186/s12864-024-10802-4.
Black pepper (Piper nigrum L.) is a non-model spice crop of significant agricultural and biological importance. The 'quick wilt' disease caused by the oomycete Phytophthora capsici is a major threat, leading to substantial crop loss. The molecular mechanisms governing the plant immune responses to this pathogen remain unclear. This study employs RNA sequencing and transcriptome analysis to explore the defense mechanisms of P. nigrum against P. capsici.
Two-month-old P. nigrum plantlets were subjected to infection with P. capsici, and leaf samples were collected at 6- and 12-hours post-inoculation. RNA was extracted, sequenced, and the resulting data were processed and assembled. Differential gene expression analysis was conducted to identify genes responding to the infection. Additionally, the study investigated the involvement of Salicylic acid (SA), Jasmonic acid (JA), and Ethylene (ET) signalling pathways. Our transcriptome assembly comprised 64,667 transcripts with 96.7% completeness, providing valuable insights into the P. nigrum transcriptome. Annotation of these transcripts identified functional categories and domains, provided details on molecular processes. Gene expression analysis identified 4,714 transcripts at 6 h post-infection (hpi) and 9,416 at 12 hpi as differentially expressed, revealing dynamic regulation of immune-related genes. Furthermore, the study investigated key genes involved in biosynthesis pathways of Salicylic acid, Jasmonic acid, and Ethylene signalling. Notably, we found differential regulation of critical genes associated with these pathways while comparing data before and after infection, thereby shedding light on their roles in defense mechanism in P. nigrum defense.
This comprehensive transcriptome analysis of P. nigrum response to P. capsici attack provides valuable insights into the plant defense mechanisms. The dynamic regulation of innate immunity and the involvement of key signalling pathways highlight the complexity of the plant-pathogen interaction. This study contributes to our understanding of plant immunity and offers potential strategies for enhancing P. nigrum resistance to this harmful pathogen.
黑胡椒(Piper nigrum L.)是一种重要的农业和生物意义上的非模式香料作物。卵菌 Phytophthora capsici 引起的“快速枯萎”病是一个主要威胁,导致大量作物损失。植物对这种病原体的免疫反应的分子机制尚不清楚。本研究采用 RNA 测序和转录组分析来探索 P. nigrum 对 P. capsici 的防御机制。
将两个月大的 P. nigrum 幼苗接种 P. capsici,并在接种后 6 小时和 12 小时采集叶片样本。提取 RNA,进行测序,并对所得数据进行处理和组装。进行差异基因表达分析以鉴定响应感染的基因。此外,该研究还研究了水杨酸(SA)、茉莉酸(JA)和乙烯(ET)信号通路的参与。我们的转录组组装包含 64667 个转录本,完整性为 96.7%,为 P. nigrum 转录组提供了有价值的见解。这些转录本的注释确定了功能类别和结构域,提供了分子过程的详细信息。基因表达分析在 6 hpi 时鉴定了 4714 个转录本,在 12 hpi 时鉴定了 9416 个转录本作为差异表达,揭示了免疫相关基因的动态调节。此外,该研究还研究了参与水杨酸、茉莉酸和乙烯信号转导生物合成途径的关键基因。值得注意的是,我们发现,在比较感染前后的数据时,与这些途径相关的关键基因的差异调节,从而阐明了它们在 P. nigrum 防御中的作用。
本研究对 P. nigrum 对 P. capsici 攻击的反应进行了全面的转录组分析,为植物防御机制提供了有价值的见解。先天免疫的动态调节和关键信号通路的参与突出了植物-病原体相互作用的复杂性。本研究有助于我们理解植物免疫,并为增强 P. nigrum 对这种有害病原体的抗性提供了潜在策略。