Institute of Medical Statistics, RWTH Aachen University, Pauwelsstrasse 19, 52074, Aachen, Germany.
Medical School, Sigmund Freud Private University, Freudplatz 1, 1020, Vienna, Austria.
BMC Med Res Methodol. 2024 Sep 30;24(1):223. doi: 10.1186/s12874-024-02335-x.
Considering multiple endpoints in clinical trials provide a more comprehensive understanding of treatment effects and may lead to increased power or reduced sample size, which may be beneficial in rare diseases. Besides the small sample sizes, allocation bias is an issue that affects the validity of these trials. We investigate the impact of allocation bias on testing decisions in clinical trials with multiple endpoints and offer a tool for selecting an appropriate randomization procedure (RP).
We derive a model for quantifying the effect of allocation bias depending on the RP in the case of two-arm parallel group trials with continuous multiple endpoints. We focus on two approaches to analyze multiple endpoints, either the Šidák procedure to show efficacy in at least one endpoint and the all-or-none procedure to show efficacy in all endpoints.
To evaluate the impact of allocation bias on the test decision we propose a biasing policy for multiple endpoints. The impact of allocation on the test decision is measured by the family-wise error rate of the Šidák procedure and the type I error rate of the all-or-none procedure. Using the biasing policy we derive formulas to calculate these error rates. In simulations we show that, for the Šidák procedure as well as for the all-or-none procedure, allocation bias leads to inflation of the mean family-wise error and mean type I error, respectively. The strength of this inflation is affected by the choice of the RP.
Allocation bias should be considered during the design phase of a trial to increase validity. The developed methodology is useful for selecting an appropriate RP for a clinical trial with multiple endpoints to minimize allocation bias effects.
考虑临床试验中的多个终点可以更全面地了解治疗效果,并且可能会增加功效或减少样本量,这在罕见疾病中可能是有益的。除了样本量小之外,分配偏倚是影响这些试验有效性的一个问题。我们研究了在具有多个终点的临床试验中分配偏倚对检验决策的影响,并提供了一种选择适当随机分组程序(RP)的工具。
我们推导出了一个模型,用于量化在具有连续多个终点的两臂平行组试验中,根据 RP 分配偏倚的效果。我们重点关注两种分析多个终点的方法,要么是 Šidák 程序,以至少在一个终点上显示疗效,要么是全部或全无程序,以在所有终点上显示疗效。
为了评估分配偏倚对检验决策的影响,我们提出了一种针对多个终点的偏倚政策。分配对检验决策的影响通过 Šidák 程序的总体错误率和全部或全无程序的 I 型错误率来衡量。使用偏倚政策,我们推导出了计算这些错误率的公式。在模拟中,我们表明,对于 Šidák 程序和全部或全无程序,分配偏倚都会导致平均总体错误率和平均 I 型错误率分别膨胀。这种膨胀的强度受 RP 选择的影响。
在试验设计阶段应考虑分配偏倚,以提高有效性。所开发的方法可用于选择具有多个终点的临床试验的适当 RP,以最大程度地减少分配偏倚的影响。