Suppr超能文献

GLCONet:用于伪装物体检测的多源感知表征学习

GLCONet: Learning Multisource Perception Representation for Camouflaged Object Detection.

作者信息

Sun Yanguang, Xuan Hanyu, Yang Jian, Luo Lei

出版信息

IEEE Trans Neural Netw Learn Syst. 2025 Jul;36(7):13262-13275. doi: 10.1109/TNNLS.2024.3461954.

Abstract

Recently, the biological perception has been a powerful tool for handling the camouflaged object detection (COD) task. However, most existing methods are heavily dependent on the local spatial information of diverse scales from convolutional operations to optimize initial features. A commonly neglected point in these methods is the long-range dependencies between feature pixels from different scale spaces that can help the model build a global structure of the object, inducing a more precise image representation. In this article, we propose a novel global-local collaborative optimization network called GLCONet. Technically, we first design a collaborative optimization strategy (COS) from the perspective of multisource perception to simultaneously model the local details and global long-range relationships, which can provide features with abundant discriminative information to boost the accuracy in detecting camouflaged objects. Furthermore, we introduce an adjacent reverse decoder (ARD) that contains cross-layer aggregation and reverse optimization to integrate complementary information from different levels for generating high-quality representations. Extensive experiments demonstrate that the proposed GLCONet method with different backbones can effectively activate potentially significant pixels in an image, outperforming 20 state-of-the-art (SOTA) methods on three public COD datasets. The source code is available at: https://github.com/CSYSI/GLCONet.

摘要

最近,生物感知已成为处理伪装目标检测(COD)任务的有力工具。然而,大多数现有方法严重依赖于从卷积操作中获取的不同尺度的局部空间信息,以优化初始特征。这些方法中一个普遍被忽视的点是来自不同尺度空间的特征像素之间的长程依赖关系,这种关系可以帮助模型构建目标的全局结构,从而产生更精确的图像表示。在本文中,我们提出了一种名为GLCONet的新型全局-局部协同优化网络。从技术上讲,我们首先从多源感知的角度设计了一种协同优化策略(COS),以同时对局部细节和全局长程关系进行建模,这可以为特征提供丰富的判别信息,从而提高检测伪装目标的准确性。此外,我们引入了一个相邻反向解码器(ARD),它包含跨层聚合和反向优化,以整合来自不同层次的互补信息,从而生成高质量的表示。大量实验表明,所提出的具有不同主干的GLCONet方法可以有效地激活图像中潜在的重要像素,在三个公共COD数据集上优于20种最新的(SOTA)方法。源代码可在以下网址获取:https://github.com/CSYSI/GLCONet。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验