Suppr超能文献

一种用于复杂样品非目标成分分析的半定量方法。

A Semi-Quantitative Approach to Nontarget Compositional Analysis of Complex Samples.

作者信息

Evans Rhianna L, Bryant Daniel J, Voliotis Aristeidis, Hu Dawei, Wu HuiHui, Syafira Sara Aisyah, Oghama Osayomwanbor E, McFiggans Gordon, Hamilton Jacqueline F, Rickard Andrew R

机构信息

Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York YO10 5DD, United Kingdom.

Centre for Atmospheric Science, Department of Earth and Environmental Sciences, School of Natural Sciences, University of Manchester, Manchester M13 9PL, United Kingdom.

出版信息

Anal Chem. 2024 Nov 19;96(46):18349-18358. doi: 10.1021/acs.analchem.4c00819. Epub 2024 Nov 7.

Abstract

Nontarget analysis (NTA) by liquid chromatography coupled to high-resolution mass spectrometry improves the capacity to comprehend the molecular composition of complex mixtures compared to targeted analysis techniques. However, the detection of unknown compounds means that quantification in NTA is challenging. This study proposes a new semi-quantitative methodology for use in the NTA of organic aerosol. Quantification of unknowns is achieved using the average ionization efficiency of multiple quantification standards which elute within the same retention time window as the unknown analytes. In total, 110 authentic standards constructed 25 retention time windows for the quantification of oxygenated (CHO) and organonitrogen (CHON) species. The method was validated on extracts of biomass burning organic aerosol (BBOA) and compared to quantification with authentic standards and had an average prediction error of 1.52 times. Furthermore, 70% of concentrations were estimated within a factor of 2 (prediction errors between 0.5 and 2 times) from the authentic standard quantification. The semi-quantification method also showed good agreement for the quantification of CHO compounds compared to predictive ionization efficiency-based methods, whereas for CHON species, the prediction error of the semi-quantification method (1.63) was significantly lower than the predictive ionization efficiency approach (14.94). Application to BBOA for the derivation of relative abundances of CHO and CHON species showed that using peak area underestimated the relative abundance of CHO by 19% and overestimated that of CHON by 11% compared to the semi-quantification method. These differences could lead to significant misinterpretations of source apportionment in complex samples, highlighting the need to account for ionization differences in NTA approaches.

摘要

与靶向分析技术相比,液相色谱与高分辨率质谱联用的非靶向分析(NTA)提高了理解复杂混合物分子组成的能力。然而,未知化合物的检测意味着NTA中的定量具有挑战性。本研究提出了一种用于有机气溶胶NTA的新的半定量方法。使用与未知分析物在相同保留时间窗口内洗脱的多个定量标准品的平均电离效率来实现未知物的定量。总共110种真实标准品构建了25个保留时间窗口,用于含氧(CHO)和有机氮(CHON)物种的定量。该方法在生物质燃烧有机气溶胶(BBOA)提取物上进行了验证,并与使用真实标准品的定量进行了比较,平均预测误差为1.52倍。此外,70%的浓度估计值与真实标准品定量的误差在2倍以内(预测误差在0.5至2倍之间)。与基于预测电离效率的方法相比,该半定量方法在CHO化合物的定量方面也显示出良好的一致性,而对于CHON物种,半定量方法的预测误差(1.63)明显低于预测电离效率方法(14.94)。将其应用于BBOA以推导CHO和CHON物种的相对丰度表明,与半定量方法相比,使用峰面积低估了CHO的相对丰度19%,高估了CHON的相对丰度11%。这些差异可能导致对复杂样品中源分配的重大误解,突出了在NTA方法中考虑电离差异的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7da0/11579983/5cea8390b038/ac4c00819_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验